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Abstract

The purpose of these lectures is to give an introduction to symplectic Floer
homology and the proof of the Arnold conjecture. This conjecture gives a lower
bound for the number of 1-periodic solutions of a 1-periodic Hamiltonian system
in terms of the sum of the Betti numbers.

The first three lectures are introductory, and deal with the basic ideas in
Floer’s proof of the Arnold conjecture. Topics covered include the Morse-Smale-
Witten complex, some basic analysis and Fredholm theory, the spectral flow and
the Maslov index, the compactness problem, the construction of Floer homology,
the proof that Floer homology is an invariant, and the role of Novikov rings.

The last two lectures deal with more recent developments and lead up to
a proof of the Arnold conjecture for general symplectic manifolds and rational
coefficients. The fourth lecture gives an introduction to Gromov compactness,
stable maps, and the Deligne-Mumford compactification, while the last lecture
discusses multi-valued perturbations, branched manifolds, the construction of
rational Gromov-Witten invariants, and the proof of the Arnold conjecture for
general symplectic manifolds.
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1 Symplectic fixed points and Morse theory

1.1 The Arnold conjecture

Let (M, w) be a compact symplectic manifold. The form w determines an isomorphism
I, : T*M — TM and the image of an exact 1-form dH : M — T*M under this
isomorphism is called the Hamiltonian vector field generated by the Hamiltonian
function H : M — R. It is denoted by Xy : M — T'M and is given by +«(Xg)w = dH.
Let Hy = Hyy1 : M — R be a smooth time dependent 1-periodic family of Hamiltonian
functions and consider the Hamiltonian differential equation

&(t) = Xo(2(t)), (1)

where X; = Xp, for ¢ € R. The solutions of (1) generate a family of symplectomor-
phisms ¢, : M — M via

d .
a% =Xyothy,  tho=1id.

The fixed points of the time-1-map 1) = 1; are in one-to-one correspondence with the
1-periodic solutions of (1) and we denote the set of such solutions by

PH)={z:R/Z— M : (1)}.

A periodic solution z is called nondegenerate if all its Floquet multipliers are not
equal to 1, or equivalently,

det(1 - diyy (2(0))) # 0. (2)

The Arnold conjecture asserts that, in the nondegenerate case, the number of 1-
periodic solutions should be bounded below by the sum of the Betti numbers of M.

Conjecture 1.1 (Arnold Conjecture) Let (M,w) be a compact symplectic mani-
fold and Hy = Hyy1 : M — R be a smooth time dependent 1-periodic Hamiltonian
function. Suppose that the 1-periodic solutions of (1) are all nondegenerate. Then

#P(H) > > dim H(M,Q)

=0
where H;(M,Q) denotes the singular homology of M with rational coefficients.

In contrast, the Lefschetz fixed point theorem only gives the alternating sum of the
Betti numbers as a lower bound. The Lefschetz fixed point theorem is related to the
Arnold conjecture in the same way as the Poincaré-Hopf theorem (which asserts that
if a vector field has only nondegenerate zeros then the number of zeros is bounded
below by the Euler characteristic) is related to Morse theory (which gives the sum of
the Betti numbers as a lower bound for number of critical points of a Morse function).
In the special case where H; = H is independent of ¢, the Arnold conjecture is obvious.
In this case all the critical points of H are constant solutions of (1) and, in particular,
are 1-periodic. Nondegeneracy of the 1-periodic solutions implies that H is a Morse
function, and hence the result follows from Morse theory.

Exercise 1.2 Let z be a critical point of H = H; and suppose that z is nondegnerate
as a l-periodic solution of (1). Prove that z is nondegenerate as a critical point of H.
O



The Arnold conjecture (in the above form) has now been proved in full generality.
It was first confirmed by Eliashberg [6] for Riemann surfaces and then by Conley and
Zehnder [2] for the 2n-torus. In [18] Gromov proved the existence of at least one
fixed point under the assumption 79(M) = 0. The breakthrough came when Floer
established the Arnold conjecture for Lagrangian intersections, and hence symplectic
fixed points, again under the assumption 7o (M) = 0. In a series of papers [7, 8, 9, 10]
Floer combined the variational approach of Conley and Zehnder with the elliptic
techniques of Gromov and the Morse-Smale-Witten complex to develop his infinite
dimensional approach to Morse theory which is now called Floer homology. This work
culminated in the paper [11], where Floer proved the Arnold conjecture for monotone
symplectic manifolds. Floer’s proof was extended by Hofer-Salamon [19] and Ono [36]
to the weakly monotone case, and recently by Fukaya-Ono [14], Liu-Tian [28], and
Hofer-Salamon [20, 21, 22, 23] to the general case. Another proof was announced by
Ruan [42].

Remark 1.3 There are many different forms of the Arnold conjecture. For example,
it can be formulated with any other coefficient ring (as long as it is a principal ideal
domain), or in the form that a lower bound for the number of periodic solutions
should (in the nondegenerate case) be the minimal number of critical points of a
Morse function. There are many examples of manifolds for which this number is
strictly larger than the sum of the Betti numbers (for any coefficient ring).

Another version of the Arnold conjecture gives a lower bound, without the non-
degeneracy condition, in terms of the Ljusternik-Schnirelman category, or again in
terms of the minimal number of critical points of any function (Morse or not) on the
manifold.

Yet another version of the Arnold conjecture refers to intersection points of two
Lagrangian submanifolds (which are related by a Hamiltonian isotopy) both in the
degenerate and nondegenerate case. There is quite a large literature on this subject,
with many partial solutions. Many question are still open, especially concerning lower
bounds which go beyond the sum of the Betti numbers, more general coefficient rings,
and Ljusternik-Schnirelman estimates for the degenerate case. |

1.2 The monotonicity condition

An almost complex structure J on T'M is called compatible with w if the formula

(&m =w(§, Jn) 3)

defines a Riemannian metric on M. The space J(M,w) of such almost complex
structures is nonempty and contractible. Thus the first Chern class ¢; = ¢, (T M, J) €
H?*(M,Z) is independent of the choice of J € J(M,w). The goal in these lectures is
to outline the proof of the Arnold conjecture in the case where the cohomology classes

¢1 and [w] satisfy the condition
/ v e :7'/ v*w 4)
52 52

for every smooth map v : S2 — M and some constant 7 € R. It is important to
distinguish the three cases 7 > 0, 7 = 0, and 7 < 0. Geometrically, this corresponds
to the conditions of positive, zero, and negative curvature. The toy models for these
cases are the 2-sphere (positive curvature), the 2-torus (zero curvature), and surfaces



of higher genus (negative curvature).! As these simple examples already indicate, the
case 7 < 0 is by far the most general. On the other hand the proof of the Arnold
conjecture is easier in the case 7 > 0 and symplectic manifolds with this property are
called monotone. This is the case originally treated by Floer in [11] and it led him
to the definition of what is now called Floer homology. The case ¢; = 0 was treated
by Hofer-Salamon in [13, 19]. This is an extension of Floer’s work and requires the
construction of Floer homology groups with coefficients in a suitable Novikov ring. The

case T < 0, and indeed that of general compact symplectic manifolds was only recently
resolved by Fukaya-Ono [14], Liu-Tian [28], and Hofer-Salamon [20, 21, 22, 23].

Remark 1.4 In [35] Ohta and Ono proved that the only symplectic 4-manifolds, in
which ¢; (T'X, J) is a positive multiple of some integral lift of w, are S? x S? and CP?
with up to eight points blown up. Also it is a well known fact in Kdhler geometry
that the only simply connected Kahler surfaces with ¢; = 0 are the K3-surfaces (e.g.
hypersurfaces of degree 4 in CP?) and they are all diffeomorphic. O

Exercise 1.5 Let Xy C CP™ be a hypersurface of degree d. Explicitly, one can think
of this as the submanifold cut out by the equation 2% + 2% + --- + 2,4 = 0. The
Lefschetz hyerplane theorem asserts that this manifold is simply connected. Prove
that its first Chern class is given by

a(Xqg)=Mm+1-d)*h

where h = PD([CP"~1]) € H?(CP";Z) is the canonical generator, and ¢ : X4 — CP™
denotes the inclusion. Deduce that X, satisfies (4) with 7 > 0 for d < n, with 7 =0
for d = n+ 1, and with 7 < 0 for d > n + 2. Hint: The direct sum of the tangent
bundle TCP™ with the trivial line bundle C is isomorphic to the (n + 1)-fold direct
sum of the canonical bundle H. The normal bundle of X4 can be identified with the
restriction of the dth tensor power of H to Xj. O

Definition 1.6 Let (M,w) be a compact symplectic manifold. Then the minimal
Chern number of (M,w) is the integer

N:inf{k>0‘§lv:52—>M, v*clzk}.
S2

If f52 v*cr = 0 for every v : S2 = M we call N = oo the minimal Chern number. If
N # oo then (c1,72(M)) = NZ.

In the following we shall assume (4) and, in the case 7 # 0, normalize the symplectic
form such that [, g2 V"w € Z for every smooth map v : S? — M.

1.3 The Morse-Smale-Witten complex

Let M be a compact smooth Riemannian manifold and f : M — R be a Morse
function. Denote by Crit(f) = {x € M : df(z) = 0} the set of critical points of
f- The Morse condition asserts that the critical points are all nondegenerate. Thus
the Hessian d?f(z) : T,M x T,M — R is nondegenerate for every z € Crit(f). In
local coordinates d? f(x) is given by the matrix of second partial derivatives and the
nondegeneracy condition asserts that this matrix is nonsingular.

!These examples do not quite fit the definition since m2(X) = 0 for Riemann surfaces of genus
g > 1. However, if we strengthen (4) to ¢1 = 7[w], then Riemannn surfaces satisfy the condition with
T = (Vol(X)) "1 (2 — 29).



Exercise 1.7 Let V denote the Levi-Civita connection of the Riemannian metric.
Prove that the linear operator V2 f(z) : T, M — T, M defined by V2 f(z)é = ViV f(x)
for £ € T, M is symmetric with respect to the given Riemannian metric. If df (z) = 0
prove that

(V1 (@),n) = &f(@)(€n)

for all (,m e T, M. O

Consider the (negative) gradient flow
u==Vf(u) (5)

and denote by ¢°® : M — M the flow of (5). The Morse condition implies that the
critical points of f are hyperbolic fixed points of (5). It follows that the stable and
unstable manifolds

W@ f) = {z€ M : lim ¢*(s) =3},

e )= {se M m ot) = o)

are smooth submanifolds of M for every critical point x of f. The Morse index of a
critical point is the number of negative eigenvalues of the Hessian (when regarded as
a linear operator V2 f(x)) and it agrees with the dimension of the unstable manifold.
It is denoted by

indf(z) = v~ (d®f(z)) = dim W*(z; f).

The gradient flow (5) is called a Morse-Smale system if, for any pair of critical
points z, y of f, the stable and unstable manifolds intersect transversally. In this case
the set

My, z; f) = W(x; ) N W (y; f)

of points in M whose gradient lines connect y to = (the space of connecting orbits) is
a smooth submanifold of M whose dimension is given by the difference of the Morse
indices:

dim M(y,; f) = indy(y) — inds ().

One can think of M(y,z; f) as the space of gradient flow lines 4 : R — M running
from y = lims,_oo u(s) to z = lim,_, oo u(s). The group R acts on M(y,z; f) by
translations and the quotient M\(y,x; f) = M(y,z; f)/R is a manifold of dimension
indf(y) —indy(x) — 1 (whenever it is nonempty). Hence the Morse-Smale condition
implies that indy(z) < indf(y) whenever there is a connecting orbit from y to z. In
short, the index decreases strictly along flow lines.

Exercise 1.8 Prove the dimension formula. O

Exercise 1.9 Prove that for every sequence u¥ € M(y,z; f) there exists a subse-
quence (still denoted by w”), finitely many critical points zg = z,z1,...,Zm = ¥,
finitely many gradient flow lines u; € M(z;,z;_1; f), and sequences sy € R, such
that, for every j, u”(s + s}) converges to u;(s), uniformly on compact subsets of R.
This limit behaviour is illustrated in Figure 1. (See [45] if you get stuck.) O



Xm=Y

m-1

X1
Xo =X

Figure 1: Limit behaviour for connecting orbits

Exercise 1.10 Prove that the quotient space M\(y, z; f) = M(y,=; f)/R of gradient
flow lines from y to z is a finite set whenever the difference of the Morse indices is
equal to 1. O

Exercise 1.11 Fix an orientation o, of the unstable manifold W*(z) for every critical
point z of f. Show how this gives rise to a natural orientation for each connecting orbit
(with index difference 1). Hint: For z € M(y,z; f) the differential of the gradient
flow dy'(z) determines, for large ¢, a vector space isomorphism

T.W(y) NVf(z)t — T,W¥(x).

Define £(z) = £1, depending on whether this isomorphism is orientation preserving
or orientation reversing. This works even if the manifold M is not orientable. O

Let us now assume that the gradient flow of f is a Morse-Smale system and fix an
orientation of W¥(z) for every critical point . Denote by

CM.(f)= @ Za)

df (z)=0

the free abelian group generated by the critical points of f. This complex is graded
by the Morse index and the boundary operator 8 = M : CMy(f) = CMy_1(f) is

defined by
Myy= Y elu)x)
iy (1)t L1 [WIEM(y,2)
for y € Crit(f) with inds(y) = k. Here the sign e(u) is given by Exercise 1.11. This
complex (CM(f),0M) is called the Morse-Smale-Witten complex. The remark-
able observation is that 8™ is indeed a boundary operator and that the homology of
this complex agrees with the homology of M.

Theorem 1.12 (Morse,Smale,Witten) Suppose that (5) is a Morse-Smale flow.
Let CM(f) and OM be defined as above. Then 0™ o M = 0 and there is a natural

isomorphism

ker oM
HMy(M, f;Z) = mar Hy(M;Z)

where Hy(M;Z) denotes the singular homology of M.



Proof: Here is a sketch of the argument which proves 8" o™ = 0. This is equivalent

to the formula
Z Z Z e()e(u) =0 (6)

Cri - O
e on L IeM(z,y) [uleM(y,2)

for every pair of critical points x, z € Crit(f) with indy(z) = k—1 and indy(2) = k+1.
This is proved by studying the ends of the 1-dimensional moduli space M (z,z). The
endpoints of this moduli space are in one-to-one correspondence with the set of pairs
of gradient flow lines (u, v) running from z to x, via some intermediate critical point y,
necessarily of index k. This assertion follows from a combination of compactness and
gluing arguments. Since every compact 1-manifold has an even number of boundary
points, we conclude that “pairs of connecting orbits come in pairs” and this proves (6)
modulo 2. (See Figure 2.)

Now the manifold M (z,z) carries a natural orientation inherited from the orien-
tations of W*(z) and W*(z). Using this orientation one can show that the indices
e(ug)e(vo) and e(uq)e(v1), correponding to the two ends of a component of M (2, ),
cancel out. This proves (6). O

Figure 2: The Morse-Smale-Witten complex

Geometrically, one can think of the formal sum ), m;W"(x;), corresponding to
an element Y, m;z; € ker 9™, as a cycle representing the image in H.(M;Z) of the
Morse-Smale-Witten homology class [, m;x;] € HM,(M, f;Z) under the isomor-
phism of Theorem 1.12. More details of the proof of Theorem 1.12 can be found
in [10, 45, 48].

Corollary 1.13 (Morse inequalities) Let f : M — R be a Morse function and
denote by cy the number of critical points of index k, and by by = rank Hy(M,Z) the
kth Betti number. Then

Ck —Ch_1 + -+ (=1)Fco > by —bp_y +---+ (=1)bg
for 0 <k <n=dim M, and equality holds for k = n.
Proof: The weak Morse inequalities ¢, > by follow from
cx = rank C My (f) > rank H,(CM(f),0M) = by.

The proof of the Morse inequalities in the strong form is left as an exercise. O



Exercise 1.14 Let f be a Morse function with only one critical point on each critical
level. For a € R denote M = {z € M : f(z) < a}.Now let z be a critical point on
the level f(z) = ¢. Prove that, for € > 0 sufficiently small, the relative homology of
the pair (M€, M°~¢) is given by

Z, if k=indf(x),

cte c—€. =
Hy (M, M, 7Z) _{ 0, otherwise.

Use this and the homology exact sequence for triples to deduce the Morse inequalities,
without resorting to Theorem 1.12. O

Exercise 1.15 A Morse function f : M — R is called self-indexing if f(z) =
inds(x) for every critical point z. In this case, prove that there is a natural iso-
morphism CMy,(f) — Hy(M*+t'/2 M*=1/2;7) and that, under this isomorphism the
boundary operator 8 corresponds to the boundary operator in the homology exact
sequence of a triple. Try to visualize this result geometrically. This can be used to
prove Theorem 1.12. O

Exercise 1.16 Identify T> = R?/Z? and consider the Morse function f : T?> — R
given by

f(z,y) = cos(2mx) + cos(2my).
Find the critical points and the connecting orbits (see Figur 3). Prove that f is a
Morse function with a Morse-Smale gradient flow. Compute the Morse-Smale-Witten
complex. Give an example of a gradient flow on the 2-torus which is not Morse-Smale.
O

[ > » < N
y y v
[ > . < n
N N A
[ > - < |

Figure 3: A Morse-Smale gradient flow on the 2-torus

Exercise 1.17 Consider the gradient flow on RP? (thought of as the 2-disc with
opposite points on the boundary identified) which is depicted in Figure 4. Compute
the Morse-Smale-Witten complex of this example. Compute the integral homology
(and cohomology) groups of RP? from the Morse-Smale-Witten complex. Find an
explicit formula of a Morse function with this gradiant flow. O

Exercise 1.18 Consider the function f : CP™ — R given by
n
flao: 212 za]) = ) dlzl*
j=1

Find the critical points and compute their Morse indices. Compute the homology
groups of CP™. O



Figure 4: A Morse-Smale gradient flow on the real projective plane

1.4 Symplectic action

Let us now return to Hamiltonian differential equations in the monotone case. In this
section we show how the contractible 1-periodic solutions of (1) can be interpreted as
the critical points of the (circle valued) symplectic action functional on the space LM
of contractible loops in M. Here is how this works.

Throughout we think of a loop in M as a smooth map z : R — M which satisfies
z(t +1) = z(t) for t € R. A tangent vector to LM at such a loop z is a vector field
¢ along z. Explicitly, we think of £ as a smooth map £ : R — T'M which satisfies
£(t) € TyyyM and &(t + 1) = &(t) for t € R. We denote the space of such vector fields
by C*(R/Z,x*TM) = T,LM. For each 1-periodic Hamiltonian H; = H;; as above
the loop space LM carries a natural 1-form g : TLM — R, defined by

Vi (2:6) = / w(@(t) — Xi((t)), £(t)) dt

for £ € T,LM. The zeros of this 1-form are precisely the 1-periodic solutions of (1).

Exercise 1.19 Prove that the 1-form ¥y is closed. Hint: Consider a 2-parameter
family of loops R?* — LM : (s1,82) = Zs, s, and denote & = 0z/0s1, & = Oz /0ss.
Then d¥ g (z;&1,&2) = 05, U (2;05,%) — 05, ¥ (x; 05, ) . O

The 1-form ¥y is not exact. However, it is the differential of a circle valued
function ag : LM — R/Z. This function is defined by

an(z) =—/Bu*w—/01 Hy(o(t)) dt

for x € LM, where u : B = {z€C : |z| <1} - M is a smooth map such that
u(e?™®) = g(t) for t € R. Such maps u exist whenever z is a contractible loop. The
assumption [, g2 UV"w € Z for every smooth map v : 52 = M guarantees that ay takes
values in R/Z. Sometimes we shall denote by ap(z,u) the symplectic action of the
pair (z,u) which is well defined as a real number.

Exercise 1.20 Prove that the differential of ag is the 1-form ¥z on LM. Hint:
Consider a path R — LM : s — z, where z4(t) = z¢ as s < —1 and define u, by
ug (27T =z () for r <0 and t € R. O

Floer’s idea is to carry out Morse theory for the symplectic action functional in
analogy to the Morse-Smale-Witten complex in finite dimensional Morse theory.

10



1.5 Connecting orbits

Let us now fix a time dependent Hamiltonian H; = Hyyq : M — R such that the
1-periodic solutions z : R/Z — M of (1) are all nondegenerate. We wish to study the
gradient flow lines of the action functional ag : LM — R/Z. For this we must choose
a metric on the loop space. Such a metric can be obtained from a 1-periodic family of
almost complex structures J; = Jiy1 € J(M,w) with corresponding metrics (£, n); =
w(§, Jym). The resulting inner product on the tangent space T,LM = C*°(R/Z,z*T M)
is given by

€)= / €(0), n(t))e dt.

Since the differential of ag is the 1-form ¥y it follows that the gradient of agy with
respect to this metric is given by

gradap(z)(t) = Jp(x(t))E(t) — VHi(z(t))

where the gradient of Hy is taken with respect to the metric (-,-); on M. A gradient
flow line of ap is a smooth 1-parameter family of loops R — LM : s — u(s,-) which
satisfies Qu/0s + gradapg(u(s,-)) = 0. In view of the above formula for gradap this
becomes the partial differential equation

ou Ou
— + Ji(u) — VH =0 7
= i) — VH(w) 7)
for smooth maps u : R? — M which satisfy the periodicity condition u(s,t + 1) =
u(s,t). Note that, in the case where J, H, and u are independent of ¢, this is the
upward gradient flow of H = H;. In the case where u(s,t) = z(t) is independent of
s, this reduces to the Hamiltonian equations (1), and in the case H; =0 and J; = J
this is the equation for J-holomorphic curves.

The construction of the Floer homology groups relies on a careful analysis of the
gradient flow lines of the symplectic action, i.e. of the solutions of (7). The energy

1 oo

of such a solution is defined by
1 ou 2
E(u) = = — .
(u) 2/ / (‘ s > ds dt
0 —co

We shall only consider solutions with finite energy. The key observation is that a
solution u of (7) has finite energy if and only if it converges to periodic solutions of (1)
as s — oo, provided that all periodic solutions are nondegenerate (see Figure 5).

DX

ou

2
+ ‘E — Xi(u)

X

Figure 5: A gradient flow line of the symplectic action

11



Proposition 1.21 Let u: RxR/Z — M be a solution of (7). Then the following are
equivalent.

(i) E(u) < oo.

(i) There exist periodic solutions x* € P(H) such that

lim u(s,t) = 2% (t). 8)

s—=+oo

and lim,_, 1 Osu(s,t) = 0, where both limits are uniform in the t-variable.
(iii) There exist constants 0 > 0 and ¢ > 0 such that

|05u(s, t)| < ce™0®!
for all s,t € R.

Proof: That (iii) implies (i) is obvious. We prove that (i) implies (ii). The proof
relies on the a-priori estimate

8 .
/ P <h = |als ) < / Ol +er® ()
B,(s,t) TTr* JB,(s,t)

for solutions of (1). Here & > 0 and ¢ > 0 are constants independent of u. A proof of
this estimate can be found in [45].? If E(u) < oo then (9) shows that O;u converges
to zero uniformly as s — +00.® Hence 8;u — X¢(u) converges to zero, uniformly in
t, as t — oo. Hence it follows from Exercise 1.22 below that, for every € > 0, there
exists a T' > 0 such that if |s| > T" then u(s,t) € U,epsr) B=(2(?)). This implies (8)
for some z+ € P(H). Thus we have proved that (i) implies (ii). The proof that (ii)
implies (iii) will be deferred to Section 2.7. O

Exercise 1.22 Suppose that every 1-periodic solution z € P(H) is nondegenerate.
Prove that for every € > 0 there exists a § > 0 such that, for every smooth loop
y:R/Z— M,

/ B - Xe@@)Pdt <5 = sup supd(a(t)y(t)) <e.
0 zeP(H) t

Hint: Argue by contradiction and use the Arzela-Ascoli theorem to show that every
sequence y, : R/Z — M with

Vll{go ”y" - Xt(yu)HLz(Sl) =0

has a subsequence which converges uniformly to a periodic solution of (1). O

2The proof of (9) is based on an inequality of the form
Ae> —A — Be?
for the energy density e(s,t) = |0su(s,t)|?, where A = 02/9s% + 02/9t?> denotes the standard
Laplacian. This inequality holds for all solutions of (7) with constants A > 0 and B > 0 depending

on w, J,and H. It is worth pointing out that H = 0 = A = 0. Now every function e which satisfies
the previous inequality also satisfies the following mean value inequality

/ < = <> / 4 At
€ e(0) < — e+ —.
) 168 w2 fo 0 4

Exercise: Assume the last assertion for r = 1, and prove it for general r by rescaling.
3Given ¢ > 0, with €2 < A, choose T > 0 such that E(u, [T — 1,00) x S') < £2. Then apply (9)
with r = /£ to obtain |9su(s,t)|?> < (c + 8/7)e for s > T.
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Exercise 1.23 Let u : R x R/Z — M be a connecting orbit for the gradient flow of
the symplectic action, i.e. a solution of (7) and (8). Assume exponential decay as in
Proposition 1.21. Prove that the energy of u is given by

E(u) = aH(SL'_,’LL_) - aH(x+,u+).

where u* : B — M are smooth functions such that u®(e?"®) = 2*(¢), and u™ is
chosen to agree with the connected sum of v~ and u, i.e. u™ = u™#u. O

1.6 Moduli spaces

Denote by

M(z™,zt) = M(z~,z; H,J)
the space of all solutions of (7) and (8). For a generic Hamiltonian H; these spaces
are finite dimensional manifolds. However, unless 7 = 0 in (4), the dimension of
M(z~,z") depends on the component of the moduli space.

Theorem 1.24 There exists a subset Hreg = Hreg(J) C C°(M X R/Z) of the second
categorie in the sense of Baire (i.e. a countable intersection of open and dense sets)
such that the 1-periodic solutions of (1) are all nondegenerate, and the moduli space
M(z=,xt;H,J) is a finite dimensional smooth manifold for all z* € P(H) and all
H € Hieg.

Moreover, if (4) holds then there is a function ng : P(H) — R such that for each
u € M(z~,z; H,J) the dimension of the moduli space is given by

dim, M(z~,z7; H,J) = p(w; H) = nu(z) —nu(zt) + 27E(u) (10)
locally near u.

The meaning of this result is not only that, by accident, M(z—,z") is a smooth
manifold, but that the natural Fredholm operator, obtained by linearizing (7), is
surjective for every connecting orbit. The proof will be outlined in the next lecture.

Remark 1.25 We shall see below that for every nondegenerate 1-periodic solution
x € P(H) and every smooth map u : B — M with u(e?>"®) = z(t) there is a well-
defined Conley-Zehnder index pg(x,u) which satisfies

pr (z, A#tu) = pa(z,u) — 2c1(A)
for every A € my(M). Since
an(z, A#u) = an(z,u) — w(A),
it follows that the difference
nu(z) = pr(z,u) — 2rag(z,u) (11)

is independent of the choice of the function u : B — M used to define it. That this
difference satisfies the requirements of Theorem 1.24 will follow from Exercise 1.23 and
the fact that p(u; H) = pg(z~,u~) — pa(zt,u”#u). Note that, without specifying
the map u : B — M, the Conley-Zehnder index of a periodic solution z € P(H) is
only well defined modulo 2N. O
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2 Fredholm theory

2.1 Fredholm operators

Let X and Y be Banach spaces. A bounded linear operator D : X — Y is called
a Fredholm operator if it has a closed range and the kernel and cokernel of D
are both finite dimensional. Throughout we think of the cokernel as the quotient
coker D = Y/im D. The index of a Fredholm operator D is defined as the difference
of the dimensions of kernel and cokernel:

index D = dim ker D — dim coker D.

The Fredholm property and the index are stable under perturbations. In particular,
the set of Fredholm operators is open with respect to the norm topology, and the
index is constant on each component. Moreover, if D is Fredholm and K : X — Y is
a compact linear operator, then D + K is again a Fredholm operator and it has the
same index as D.

Exercise 2.1 Let X, Y, Z be Banach spaces, D : X — Y be a bounded linear
operator, and K : X — Z be a compact linear operator. Suppose that there exists a
constant ¢ > 0 such that the following inequality holds for all x € X

lzllx < cUDzlly + [[Kzll,) - (12)

Prove that D has a closed range and a finite dimensional kernel. Use this to prove
that the Fredholm property of D is invariant under small perturbations. O

A smooth (C*) map f : X — Y is called a Fredholm map if its differential
df(z) : X = Y is a (linear) Fredholm operator for every 2 € X. In this case it follows
from the stability of the Fredholm index that the index of df(z) is independent of x
and we write index(f) = indexdf(z). A vector y € Y is called a regular value of f
if df (z) : X — Y is onto for every x € f~1(y). If y is a regular value then, as in the
finite dimensional case, the implicit function theorem asserts that

M=f"y)
is a smooth finite dimensional manifold. Its tangent space at x € M is given by
T, M = ker df (x)

and, since df (z) is onto, the dimension of M agrees with the index of f.

2.2 The linearized operator

We wish to prove that the moduli spaces M (z~,zt; H,J) are smooth finite dimen-
sional manifolds. Hence we must express these spaces as zero sets of functions between
suitable Banach spaces. It is useful to abbreviate the left hand side of (7) as
= ou ou
0 = — 4+ J(u)—=— — VHi(u).
i, () = 2o+ ()5 ¢(w)
This is a vector field along u. Let us fix an element v € M(z~,z") and consider a

vector space
Xy CCPR x R/Z,uw*TM)
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of all vector fields £ along u which satisfy a suitable exponential decay condition as
s — too. Explicitly, think of £ as a smooth function R x R/Z — TM such that
&(s,t) € Tys,pyM. A function near u which also satisfies the limit condition (8) can
be expressed uniquely in the form u' = exp,(§) for some { € X,. Hence the set of
solutions of (7) and (8) can be expressed as the zero set of a function

Fu: Xy = Xy
Explicitly, F, is defined by

Ful€) = u(€) ' Om,s(exp, (€))

for £ € Ay, where ®,(§) : TuM — Teyp, (e)M denotes parallel transport along the
geodesic 7 — exp,, (7€). The differential of F,, at 0 is the linear first order differential
operator D, = dF,(0) given by

D& = V& + J(u) Vi€ + Ve J(u)Opu — Ve VH(u). (13)
It turns out that D, is a Fredholm operator between suitable Sobolev completions of
X,. We introduce the Sobolev norms

1/p

o pl 1/p oo ol
leo = ([ [1er) o Mewen = ([ [ 16+ mer+rmer)

for 1 < p < 0o. The corresponding completions of X, will be denoted by
P =LPR x SYL,u*TM), W' =WP(R x S*,u*TM).

We shall prove that D, : WP — LP is a Fredholm operator and express its index in
terms of a suitable Maslov index.

It is useful to simplify the formula for D, by choosing a unitary trivialization of
the vector bundle u*TM — R x S*. Such a trivialization takes the form of a smooth
family of vector space isomorphisms ®(s,t) : R*® — T, M which identify the
standard symplectic and complex structures wy and Jy on R?” with the corresponding
structures w and J on TM. In such a frame the operator D,, has the form

D¢ = 0,€ + Jo0i€ + S¢ (14)
for £ : R x ST — R?". Here the matrices S(s,t) € R?"*2" are defined by
S=31D,®=31(V,®+ J(u)V,® + VisJ(u)0u — Vo VH(u)) .
The limit matrices

SE(t) = Jim S(s,t) = &' T (Vi@ — Vo Xy (u))
are symmetric and hence, modulo some compact perturbation, we may as well assume
that S is symmetric for all s and ¢. Associated to a symmetric matrix valued function
S : R x R/Z — R?"%27 j5 a symplectic matrix valued function ¥ : R x R — Sp(2n)
given by*
Jo0y ¥ + ST =0, U(s,0) = 1. (15)

Denote U*(t) = limy_, 400 ¥(s,1).

4Recall that the group of symplectic matrices is given by
Sp(2n) = {\IJ e R¥»x2n . g7 jop = JO} )

Here Jo € R27%27 denotes the standard complex structure given by (z,y) — (—y,z) for z,y € R™.
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Theorem 2.2 Suppose that det(1 — U*(1)) # 0. Then the operator
D : WHP(R x S8';R2") — LP(R x S%;R2")

given by (14) is Fredholm for 1 < p < oo. Its Fredholm index is given by the difference
of the Conley-Zehnder indices:

index D = ucz(\I’J’_) — pez(T7). (16)

The index formula in terms of the Conley-Zehnder index is due to Salamon-
Zehnder [47], and an alternative proof was given by Robbin-Salamon [41]. The proof
of Theorem 2.2 and the relevant definitions occupy the next three sections.

2.3 [P-estimates

For p = 2 the proof of the Fredholm property is fairly straight forward and details
have been carried out by several authors (cf [9, 40, 47, 49]). For p # 2 the Fredholm
property was proved in [29]. The case p = 2 is the Sobolev borderline case, and the
nonlinear Fredholm theory requires the case p > 2. Roughly speaking, the reason is
that, in dimension 2, the Sobolev space W? embeds into the space of continuous
functions, while there are W':2-functions on R? which are discontinuous. For p > 2
the proof of the Fredholm property relies on the following two lemmata. We follow
the line of argument in [3].

Lemma 2.3 There exists a constant ¢ > 0 such that

€l < c(IDEl Lo + [1€1l2) (17)

Proof: This is essentially the Calderon-Zygmund inequality which asserts that there
exists a constant cg > 0 such that every compactly supported function u» : R™ — R
satisfies

Z 10:0;ull o @my < ¢ |AU| Lo (@)

3,J=1

where

denotes the Laplace operator. Once this is established, the proof of Lemma 2.3 is an
easy exercise. Details are left to the reader. Hint: Use the formula (95 — Jo0;)(0s +
Jo0¢) = A. Consult Appendix B in [31] if you get stuck. O

Lemma 2.4 Suppose that S(s,t) = S(t) is independent of s and that
det(1—T(1)) #0
where ¥ : [0,1] — Sp(2n) is defined by ¥ (t) = JoS(t)¥(t) and ¥(0) = 1. Then the
operator
D =09, + Jo0; + S : WHP(R x S1,R?") = LP(R x S*,R*")

is bijective for 1 < p < 0.
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Proof: We shall only consider the case p > 2. The proof consists of four steps.
Step 1: The result holds for p = 2.

Consider the operator
A= Jod; + S : WH2(S R?"™) - L2(S1,R?™)

This is an unbounded self-adjoint operator on the Hilbert space H = L?(S!, R?") with
domain W = W12(S1,R?"). The assumption det(1 — ¥(1)) # 0 guarantees that A is
invertible, i.e. 0 is not an eigenvalue. Hence there is a splitting

H=Et®oE~

into the positive and negative eigenspaces of A. Denote A* = A|p+ and denote by
P* : H — E* the orthogonal projections. The operator —AT generates a strongly
continuous semigroup of operators on ET and A~ generates a strongly continuous

. _ . _ At -
semigroup of operators on E~. Denote these semigroups by s — e~4" % and s — e?” *,

respectively, where both are defined for s > 0. Now define K : R — L(H) by

K(s) = e~ ATspt, for s >0,
—e~A7spP~  for s <0.

This function is discontinuous at s = 0, strongly continuous for s # 0, and satisfies
1K ()l oy < €7 (18)

for some constant § > 0. Consider the operator @ : L?(R,H) — WL2(R, H) N
L?(R,W) defined by

@)= [ K-t dr

for n € L?>(R,H). We claim that this is the inverse of D. To see this note that
E=Qn=¢&"+ ¢ where

&)= [ L e Ayt £ (s) = / e ATy ().

s

A simple calculation now shows that £+ + A*¢+ = % and hence £ + A€ = 7. Finally,
note that the space W12(R, H) N L2(R, W) agrees with W12(R x S1,R?").

Step 2: There exists a constant ¢c; > 0 such that

Iellwi o1ty < € (Dl 1oty + 1€l 212105

for € € WhP([—1,2] x SY). Moreover, if € € W2 and DE € WP, then £ € WP,

loc ’ loc

The inequality is proved in three stages. The first is the same inequality with
the L?-norm on the right replaced by the LP-norm. This follows directly from the
Calderon-Zygmund inequality. The second stage uses the Sobolev embedding W12 —
L? with corresponding estimate [|£]|;, < cl|€]lyy12- The third stage is the elliptic
estimate for W12, In both the first and third stage the domain has to be increased.
Details are easy and are left to the reader. Finally, that D¢ € LE  implies £ € W7
is the standard elliptic regularity result.
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Step 3: Consider the norm

o0 1/p
ey = ([ Ne(s, My ds)

There exist constants ca,c3 > 0 such that, if £ € WH2(R x ST, R?™) and D¢ € LP(R x
S, R?™), then £ € WHP(R x S1,R?*™) and

lll,p < 2 D€l ellwns < s (IDEN + il ) -

It follows from Step 2 that £ € VV] P Hence, to establish the first assertion, it
only remains to prove that [|{||y1,, < 0o and this will follow from the two estimates.
The first of these is just Young’s convolution inequality. Namely, by assumption, we
have n = D¢ € L2(R,H) N LP(R, H). Step 1 shows that £ = Qn = K *n. Hence, by
Young’s inequality,

2
1@l = I 50l oy < IK W,y Wl sy < 5 Wl

The last inequality uses (18) and [In(s)||;2(s1y < [In(s)|l 1z (s1) for p > 2.
To prove the second inequality in Step 3, we use Step 2 and (a + b)? < 2P(a? + bP):

k+2 k2 , p/2
1€l (rpsixsry < 2Ped” /k D€z 51 ds + (/k ez ds)
k2 k+2
< 2Pq” (/ IDEIILe (51 d3+3p/2_1/ 1€l172(s1) ds
k-1 k-1
k+2
< 3”/2_121301”/]6 (”D'f” Tocsty + €12 51y ) ds
-1

Take the sum over all k to obtain

o0
el <3227 [ (IDEGs 50, + Il acsr)

and hence

lellws < cs (1Dl + l€ll5,,) -
This proves the inequalities and Step 3.
Step 4: We prove the lemma.
Putting the two estimates of Step 3 together we obtain

€llwre < cs(1+ c2) 1Dl s

for every £ € C§°(R x S1,R?"). Since C§° is dense in W17, this estimate continues
to hold for all £ € WP, It follows that D : W1P — LP is injective and has a closed
range. Thus it suffices to prove that the range is dense. Let

n € LP(R x S*,R*) N L*(R x S*,R*")

be given. Then, by Step 1, there exists a £ € W2 such that D¢ = 5. By Step 3,
¢ € WHP and this proves that 7 is in the range of D : W» — LP. Hence D has a
dense range, and hence it is onto. This proves the lemma in the case p > 2. O
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Exercise 2.5 Prove that Lemma 2.4 continues to hold with p replaced by ¢ < 2.
Hint: Choose p > 2 such that 1/p+ 1/q = 1. Define W ~1¢(R x S, R?") as the dual
space of W1P(R x S1,R?"). Prove that the operator D satisfies an estimate of the
form

€l e < D&l 1.0

To see this interprete D : LY — W14 as the functional analytic adjoint of the

operator
D* = —83+J08t+S:W1’p — LP.

Now prove that ||0s¢||y -1, < ||€|. and use this to establish an estimate of the form
Ellw.e < clIDE|lLq -

Finally, prove that D : W% — L4 has a dense range. O

Proof of Theorem 2.2 (the Fredholm property): If det(1 — ¥*(1)) # 0, then

it follows from Lemma 2.4 that there exist constants 7' > 0 and ¢ > 0 such that, for
every £ € WHP(R x ST, R?),

&(s,t) =0 for |s|<T -1 = 1€l wrr < cl|DE]|Le. (19)

Now choose a smooth cutoff function 8 : R — [0, 1] such that §(¢t) = 0 for |¢| > T and
B(t) = 1for |t| < T —1. Using the estimate (17) for 3¢ and (19) for (1 — 3)¢ we obtain

€]l 1B&llwe + [1(1 = B)Ellwr.»
c1 (1BEllLe + (ID(BE e + ID((1 = B)E)|Lr)
2 (lllpej—1,17 + [1DE|Lv) -

ININ A

Thus we have established an estimate of the form

llwre < ¢ (I€llLoi—z,27 + [1DE]|r) (20)
for £ € WHP(R x S1,R?"). Since the restriction operator
WhHP(R x Y, R™) — LP([-T,T] x S*,R™)

is compact it follows from Exercise 2.1 that D has a finite dimensional kernel and
a closed range. That D also has a finite dimensional cokernel, follows from elliptic
regularity. Namely, suppose that n € LI(R x S1,R?") (with 1/p+1/q = 1) annihilates
the image of D. Then it follows from local elliptic regularity that n € I/Vli’cq and there
is a constant ¢ > 0 such that

Inllw o pr1jxsry < c(||D*77||L4([k—1,k+2]x51)+||77||Lq([k—1,k+2]><51))

= C||77||Lq([k—1,k+2]><sl)-

Here D* = —9, + Jy0; + S denotes the formal adjoint operator and the last equality
holds since D*n = 0. Taking the ¢-th power of this inequality and summing over k we
find that n € WH4(R x S*, R?") and D*n = 0. Thus the cokernel of D : W1:P — [P
agrees with the kernel of D* : W% — L9 and therefore is also finite dimensional. O
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2.4 The Conley-Zehnder index

Denote by Sp(2n) the group of symplectic 2n x 2n-matrices. In [2] Conley and Zehn-
der introduced a Maslov type index for paths of symplectic matrices. Their index
assigns an integer ucz(¥) to every path ¥ : [0,1] — Sp(2n) such that ¥(0) = 1
and det(1 — ¥(1)) # 0. Other expositions are given in Salamon-Zehnder [47] and
Robbin-Salamon [40].

Denote by Sp*(2n) the open and dense set of all symplectic matrices which do not
have 1 as an eigenvalue. This set has two components, distinguished by the sign of
det(1 — ¥). Its complement is called the Maslov cycle. It is an algebraic variety of
codimension 1 and admits a natural coorientation. The intersection number of a loop
® : S' — Sp(2n) with the Maslov cycle is always even and the Maslov index u(®) is
half this intersection number. Alternatively, the Maslov index can be defined as the
degree

p(®) = deg(po @)

where p : Sp(2n) — S! is a continuous extension of the determinant map det : U(n) =
Sp(2n) N O(2n) — S'. The map p is not a homomorphism but can be chosen to
be multiplicative with respect to direct sums, invariant under similarity, and taking
the value £1 for symplectic matrices with no eigenvalues on the unit circle. These
properties determine p uniquely (cf. [47]).

Now denote by SP(n) the space of paths ¥ : [0,1] — Sp(2n) with ¥(0) = 1 and
¥(1) € Sp*(2n). Any such path admits an extension ¥ : [0,2] — Sp(2n), unique up
to homotopy, such that ¥(s) € Sp*(2n) for s > 1 and ¥(2) is one of the matrices
Wt = —1 and W~ = diag(2,-1,...,—1,1/2,—1,...,—1). Since p(W¥*) = +1 it
follows that p? o ¥ : [0,2] — S! is a loop and the Conley-Zehnder index of U is
defined as its degree

poz(¥) = deg(p” o ).

The Conley-Zehnder index has the following properties. It is uniquely determined by
the homotopy, loop, and signature properties [47].

(Naturality) For any path & : [0,1] — Sp(2n), pcz(®¥®~1) = ucz(P).
(Homotopy) The Conley-Zehnder index is constant on the components of SP(n)
(Zero) If ¥(s) has no eigenvalue on the unit circle for s > 0 then ucz(¥) = 0.

(Product) If n' +n" = n identify Sp(2n') & Sp(2n") with a subgroup of Sp(2n) in
the obvious way. Then pcz(¥' ® ") = ucz(P') + pcz(¥").

(
(Loop) If ®: [0,1] = Sp(2n,R) is a loop with ®(0) = &(1) = 1 then
ez (@) = poz(¥) + 2u(®).

(Signature) If S = ST € R2"*2" ig a symmetric matrix with ||S|| < 27 and ¥(t) =
exp(JoSt) then
1.
poz(¥) = 5518;11(5)

where sign S is the signature (the number of positive minus the number of nega-
tive eigenvalues).

(Determinant) (—1)"#cz(¥) = sign det(1 — ¥(1)).
(Inverse) pcz(¥') = pcz(¥7") = —pcz(P).
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Here is an alternative definition of the Conley-Zehnder index in terms of crossing
numbers, as in [40]. Any path ¥ € SP(n) can be expressed as a solution of an ordinary
differential equation )

(t) = JoS(H)¥(t),  ¥(0) =1,
where t — S(t) = S(t)? is a smooth path of symmetric matrices. A number ¢ € [0, 1]

is called a crossing if det(1 — ¥(¢)) = 0. If ¢ is a crossing then the crossing form is
the quadratic form I'(¥,t) : ker(1 — ¥(¢)) — R defined by

T(, )¢ = wo(&, T(t)&) = (€0, S(t)éo)

for & € ker (1 — ¥(¢)). A crossing t is called regular if the crossing form is non-
degenerate. Regular crossings are isolated. For a path ¥ € SP(n) with only regular
crossings the Conley-Zehnder index is given by the formula

poa(®) = sign(S(0)) + Y sign (¥, )
t>0

where the sum runs over all crossings ¢ > 0. That both definitions of the Conley-
Zehnder index agree is proved in Robbin-Salamon [40].

2.5 The spectral flow
The operator D = 95 + Jp0; + S can be written in the form

0
D = & + A(S)
where A(s) : WH2(S!,R?") — L?(S',R?") is given by
AGs) = ho 2 + 805, (21)
~ 5t s

This is a smooth family of unbounded self-adjoint operators on the Hilbert space
H = L?(S',R?"). Tt turns out that the limit operators

AT = lim A(s)

s—Zoo

are both invertible. In this case the Fredholm index of D is given by the spectral flow
of A (see Atiyah-Patodi-Singer [1]). In our discussion we follow the exposition in [41].

jeigenvalues
:of A(s)

S§=-0 s s=to©

Figure 6: The spectral flow
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Intuitively, the spectral flow is the number of eigenvalues of A(s) crossing zero
from negative to positive as s moves from —oo to +oo (see Figure 6). More formally,
the spectral flow can be defined as follows. A number s € R is called a crossing
if ker A(s) # {0}. If s is a crossing then the crossing form is the quadratic form
T'(A,s) : ker A(s) = R defined by

D(4,8)€ = (& A()E)n

for £ € ker A(s). A crossing s is called regular if the crossing form is nondegenerate.
Regular crossings are isolated. For a smooth family s — A(s) with only regular
crossings the spectral flow is defined by

uP(A) = Z signT'(A, s)

where the sum runs over all crossings (cf. Robbin-Salamon [41]).

Lemma 2.6 Let A(s) be given by (21) and ¥(s,t) by (15). Then the operator path
s+ A(s) has the same crossings as the symplectic path s — ¥(s,1) and the crossing
forms are isomorphic.

Proof: A function ¢ : R/Z — R?" is in the kernel of A(s) if and only if
£(t) = U(s,t)6,  &o € ker (1 —U(s,1)).

This shows that the crossings are the same. Next we claim that the crossing forms
agree under the natural identification of ker A(s) with ker (1 — ¥(s,1)). This means
that

T(A, 5)¢ / (B(s, )60, BuS (s, 1) U (s, 1)Eo) dl

= <§0,§(371)§0) (22)
= F(‘I’(al),s)go

for & € ker (1 — ¥(s, 1)), where S(s,t) is defined by
8T = JoST.
To prove (22) note that

,(¥TSW) = (8,0)T ST + ¥79,(SV)
= 075180 - 97 J,6,8,%
= —0TS(9,¥) — ¥ Jy0,(JoS¥)
= v7(5,9)0.

Integrating over ¢ from 0 to 1 we obtain
1
W(s, 1)T(s, 1)%,1):/ W(s, 10,5 (s, £)U(s, t) dt
0

and this implies (22). O
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Proof of Theorem 2.2 (the index formula): Suppose, without loss of generality,
that ¥(s,t) = U~ (¢) for s < —T and ¥(s,t) = UT(¢) for s > T, and that the path
s — ¥(s,1) has only regular crossings. The symplectic loop around the boundary
of the square [—T,T] x [0,1] is obviously contractible. Hence the difference of the
Conley-Zehnder indices can be expressed in the form

pez(Th) — pez(¥7) = n({¥(s, D} -r<e<r) ZSlgnF ,8)-

By Lemma 2.6, the term on the right agrees with the spectral flow of the operator
family s — A(s), and hence we have

pcz(T1) — poz(¥7) = p*P*(A) = index D.

The last identity is proved in [41]. This proves the theorem. O

2.6 Transversality

Let us now return to the manifold situation of Theorem 1.24. In order to apply Theo-
rem 2.2 we must assign a Conley-Zehnder index to every nondegenerate periodic solu-
tion z € P(H). This can be done as follows. Linearizing the differential equation (1)
along z(t) we obtain linear symplectomorphisms di(x(0)) : TpoyM — TpyM. In
order to obtain a symplectic path ¥, € SP(n) we must trivialize the tangent bundle

z*T M over x: 2 (a(0))
0
ToM = ToyM
) )
RQn ‘I’m_(’i) R2n

Such a trivialization can be obtained by specifying a disc v : B — M such that
u(e?™®) = z(t) and then trivializing u*T M. This gives rise to a Conley-Zehnder index

pr(z,u) =n — pcz(¥e).
This index satisfies the following.

Corollary 2.7 Let x* € P(H) be two nondegenerate periodic solutions of (1). More-
over, let u : R x R/Z — M be a smooth map which satisfies the limit condition (8).
Let u* : B — M satisfy u®(e?>™) = z%=(t) and ut = u~#u. Then

Dy : WhP(u*TM) = LP(u*T M)
is a Fredholm operator and its Fredholm index is given by
index Dy, = p(u, H) = pu(z,u”) — pa(z,u'). (23)
Proof: Theorem 2.2. |

Exercise 2.8 Suppose that H; = H is a Morse function with sufficiently small second
derivatives. Let z(t) = z be a critical point of H and define u : B — M as the constant
disc u(z) = z for z € B. Prove that

pr(z,u) = ind_pg(z),

i.e. the Maslov index of the pair (x,u) is equal to the Morse index of z as a critical
point of —H. O
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Exercise 2.9 Let z € P(H) and u: B — M be as above. Prove that
pr (@, A#u) = pr(z,u) — 2c1(A)

for every A € mo(M), where ¢1(A) € Z denotes the integral of the first Chern class
c1 € H?(M,Z) of the tangent bundle over A and A#u denotes the disc obtained by
taking the connected sum of a representative of A with w. O

Exercise 2.10 Given a Hamiltonian H with only nondegenerate 1-periodic solutions
and z* € P(H), consider the space Z(z~,z%) of all smooth maps u : R x S' — M
which satisfy (8). Abbreviate

zH)= |J 2@ ,2M.
zteP(H)

If upy € Z(wo, 1) and uis € Z(x1,22) such that ugi(s,t) = z1(t) for s > 0 and
u12(s,t) = z1(t) for s < 0 define the catenation ug; #uis € Z(xg,z2) by

U S,t , 8 S 07
ugr#u12(s,t) = { u(l);gs t% 5> 0.

Think of the Maslov index as a function Z(H) = Z : u — pu(u, H) defined by (23).
Prove that this function has the following properties.

(Homotopy) The Maslov index is constant on the components of Z(H).
(Zero) If x— =z =z and u(s,t) = z(t) then
p(u, H) = 0.
(Catenation)
pluorFfuiz, H) = p(uor, H) + p(uiz, H).
(Chern class) If v : S> - M then

p(udbo, ) = p(u, H) +2 /S e

(Morse index) Assume H; = H : M — R is a Morse function with sufficiently small
second derivatives. Then the 1-periodic solutions z € P(H) are the critical points
of H and, for every u € Z(z~,zT) with u(s,t) = u(s),

w(u, H) = indg (z*) —indg(z).
(Fixed point index) For u € Z(z~,zt),
(—1)*H) = sign det(1 — drr (27 (0))) det(1 — deprr (T (0)))
where oy =11 : M — M is the time-1-map of (1). O
Exercise 2.9 shows that, in the case where all 1-periodic solutions z € P(H) are

nondegenerate and w satisfies (4), there exists a well defined function ng : P(H) — R
which satisfies

nu(z) = p(z,u) — 2rag(z,u)
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for every u: B — M with u(e?™%) = z(t). By Exercise 1.23,
p(u, H) =nu(a") —nu(z") + 27E(u)

for every u € M(xz~,zT; H,J). This proves the index formula in Theorem 1.24. Let
us now define
Hieg C C°(M x R/Z)

as the subset of all those Hamiltonians for which all the periodic solutions z € P(H)
are nondegenerate and for which the operator D, is surjective for every pair z* €
P(H) and every connecting orbit u € M(xz~,z%; H,J). Then the implicit function
theorem shows that the moduli spaces M(z~,z"; H, J) of connecting orbits are finite
dimensional smooth manifolds of the right dimension whenever H € H,eg. Hence, to
complete the proof of Theorem 1.24, it remains to show that the set Hieg is indeed
of the second category in the sense of Baire, i.e. can be expressed as a countable
intersection of open and dense sets (and hence, in particular, is nonempty). This
follows, via standard transversality arguments, from an infinite dimensional version of
Sard’s theorem which is due to Smale [52]. The details are carefully carried out in [13]
and [47] and will not be reproduced here.

2.7 Exponential convergence

The purpose of this final section of the Fredholm chapter is to prove that all finite
energy solutions of (7) converge exponentially to periodic orbits, and thus to complete
the proof of Proposition 1.21.

Lemma 2.11 Suppose that the operator D = 05 + JoOy + S satisfies the requirements
of Theorem 2.2 and, in addition,

lim sup [|0;5(s,t)[[ =0,  sup|9:S(s,t)|| < oo.
s—=+00 g<¢<1 st

Then there exists a constant § > 0 such that the following holds. For every C?-function
¢ : R x R/Z — R?" which satisfies D€ = 0 and does not diverge to co as s — +00
there exists a constant ¢ > 0 such that, for all s,t € R,

|€(s, t)] < cele,
Proof: Consider the function f : R — R defined by

1) =3 | lets.t?

By assumption, this function is twice continuously differentiable and its second deriva-
tive is given by

f"(s) /01 (Iasﬁ(sat)l2 + <£(8,t),55656(8,t))) dt

1
0

1
= 2 / 0.6 (s, 1) dt — / ((s,1), 0uS (5, (s, 1)) dt

\Y%

1 1
2 [ 1hdue(s,) + S5, 060, 0P dt = [ s, ae
0 0

vV

5 / €(s, 1) dt
= 82f(s).
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Here the penultimate inequality only holds for sufficiently large s and it uses the fact
that the operator A(s) = JoO; + S is invertible for large s. Now the inequality

"> 6*f

inplies that e=9%(f'(s) + df(s)) is nondecreasing. Hence f'(s) + df(s) < 0 for s > s
since otherwise f(s) would diverge exponentially as s — oo. Hence the function e®® f(s)
is nonincreasing and this implies f(s) < e=9(*=%) f(s4) for s > s9. The argument for
s — —oo is similar, and this proves an estimate of the form

1
/ |E(s, t)|? dt < ce™®®!
0

for all s. To get the pointwise inequality, apply the operator 05 — Jo0; to the equation
D¢ = 0 to obtain
Ag = Jo0:(S¢) — 95(5¢),

where A = 8%/9s® + 82 /0t*. This implies that there is a constant ¢ > 0 such that
A[EP? > —clg|?

for all £ € ker D. This inequality in turn can be used to derive a mean value inequality

of the form
c
0P <5 [
2 B, (s,t)

for r > 0 and s,t € R. With r = 1, say, we obtain the required pointwise exponential
decay. O

Proof of Proposition 1.21: (ii) => (iii): First it follows from standard elliptic
estimates that every finite energy solution u : R x R/Z — M of (7) satisfies

lim sup (|V585u(s,t)| + |Vt85u(s,t)|) =0, sup |V;Oru(s, t)] < oo.
s,t

s—+oo 0<t<1

It then follows by inspection that the matrix function S(s,t) in (14) satisfies the
requirements of Lemma 2.11. Since D,0;u = 0, it follows from Lemma, 2.11 that d;u
converges to zero exponentially as s — f+oo. This proves the proposition. O
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3 Floer homology

The goal of this lecture is to explain the definition of the Floer homology groups of a
Hamiltonian H € C*°(M x R/Z) for monotone symplectic manifolds. The first sec-
tion is devoted to the fundamental compactness result which asserts that, for a generic
Hamiltonian, there are only finitely many connecting orbits of index 1. Section 3.2
explains the definition of the Floer homology groups and their main properties. The
following three sections provide some details of the proofs. Section 3.3 explains Floer’s
gluing construction, Section 3.4 outlines the proof that Floer homology is an invari-
ant, and Section 3.5 explains the isomorphism between Floer homology and Morse
homology. Sections 3.6 and 3.7 discuss the extension of Floer homology to symplectic
manifolds with vanishing first Chern class.

3.1 Compactness

Denote by M (z=,z%; H,J) = {u € M(z~,z";H,J) : u(u; H) = 1} the one dimen-
sional part of the moduli space of connecting orbits. The goal of this section is to
prove the following.

Proposition 3.1 If (M,w) is monotone and H € Hyeg then the quotient space
/T/l\l(wf,a:jL;H, J) =Mz ,z;H,J)/R
is a finite set for every pair x+ € P(H).
Forv:S? - M and J € J(M,w) define

8 (v) = %(dv +Jodvoi) € Q%(S?,v* T M),

where ¢ denotes the standard complex structure on S2. The function v is called a
J-holomorphic sphere if 9;(v) = 0. The energy of v is the integral

E(w) = /52 v*w.

This is equal to half the L?-norm of dv and hence is positive whenever v is nonconstant.

Lemma 3.2 For every J € J(M,w) there exists a constant h = hi(M,w,J) > 0 such
that E(v) > h for every nonconstant J-holomorphic sphere v: S? — M.

Proof: Choose i > 0 such that that the following holds for every J-holomorphic
curvev:{z€C: |z—2z|<r} >+ M

/ @ <h = |du(z)? < (PR (24)
|z—z0|<7 r |z—zo|<T
The proof, that such a constant 7 > 0 exists, relies on a partial differential inequality
of the form Ae > —Be? for the energy density e = |dv|?. (see footnote on page 12).
Now suppose that v : S = CU {oc} — M is a J-holomorphic curve with energy
E(v) < k. Then the a-priori estimate (24) holds for all » > 0, hence dv = 0, and hence
v is constant. O
If t = Jy = Jpq1 is a smooth family of almost complex structures compatible with
w, then A = min; A(M,w, J;) > 0. Moreover, if (M,w) is monotone with minimal
Chern number N, then i = N/7 satisfies the requirements of Lemma 3.2 for every
JeT(M,w).
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Proposition 3.3 (Bubbling) Let u” € M(z~,z%;H,J) be a sequence such that

sup E(u”) < oo. (25)

Then there ezist finitely many points z; = s; +it; € Rx S', j = 1,...,¢, and a
solution u of (7) such that a subsequence of u¥ converges to u, uniformly with all
derivatives on compact subsets of R x S* — {z1,...,2¢}. Moreover, the limit solution
satisfies

E(u) < liminf E(u") — £h

V—00

where k= ming (M, w, Jy).

Proof: We sketch the main ideas. First, it follows from basic elliptic bootstrapping
techniques that every sequence u” € M(z~,zt; H,J) with uniformly bounded first
derivatives, i.e.
sup [|95u” || o < 00, (26)
14

has a subsequence which converges, uniformly with all derivatives on compact subsets
of Rx S, to a solution u of (7). Secondly, if (26) is not satisfied then, for every sequence
¢¥ — z with |9su”(¢*)] — oo, one can prove that there exists another sequence
z¥ — z = s+ it and a sequence €” — 0 such that the rescaled sequence v”(z) =
u”(2” + €”z) has a subsequence which converges to a nonconstant Ji-holomorphic
map v : C = M.?> The removable singularity theorem asserts that v extends to a
nonconstant Jz-holomorphic sphere and hence, by Lemma 3.2, E(v) > h. Now the
subsequences (still denoted by u” and v”) satisfy the following, for every (small) £ > 0
and every (large) R > 0,

liminf E(u”, B:(2)) > liminf E(u”, Brv(2"))
V—00 V—0o0
= liminf E(v”, Bgr(0))
V—0o0
—  B(v, Ba(0)).

Taking the limit R — oo we find

liminf E(u”, B:(z)) > h
V—00
for every € > 0. Since the energy of 4" is uniformly bounded above, this can only hap-
pen at finitely many points 21, ..., 2;. We can then choose a further subsequence which
converges, uniformly with all derivatives on compact subsets of R x S* — {21,..., 2},

5The sequences z” and £” can be found by using Hofer’s lemma: Let (X,d) be a complete metric
space, f : X — R be a nonnegative continuous function, £ € X, and § > 0. Then there exists a
z € X and a positive number £ < § such that

d(x, z) < 26, sup f < 2f(z), ef(z) > 6f(x).
Be(2)
Apply this lemma to the function f = |8su”|, the point & = ¥, and the constant § = |dsu¥ (2¥)|~1/2
to obtain sequences z” — z and €” > 0 such that

e — 0, e¥|8su” (2¥)] = o0, sup |9su”| < 2|0su” (V).

B.v (2Y)

These sequences satisfy the assertion.
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to a function u: R x S — {z1,...,2¢} — M. The limit necessarily satisfies (7) and

E (u,R x S — UBE(zi)> lim E (u",R x S — UBg(zi)>

< limsup E(u”) — Z liminf E(u”, B: (%))

v—00 v—oo

< limsup E(u”) — ¢h

V—0o0

for every € > 0. Taking the limit ¢ — 0 we find

E(u) < limsup E(u”) — £h.
V—00

Finally, the removable singularity theorem for solutions of (7) shows that v extends
to a smooth function on all of R x S*. This proves the proposition. O

The convergence in the complement of a finite set as in the assertion of Propo-
sition 3.3 will be called convergence modulo bubbling. The limit solution « has
finite energy and hence, by Proposition 1.21, is again a connecting orbit. One can now
argue as in the finite dimensional case (Exercise 1.9) to prove the following corollary
(see Figure 7).

Corollary 3.4 Suppose that the periodic solutions x € P(H) are all nondegenerate
and let v¥ € M(z—,zT;H,J) be a sequence which satisfies (25). Then there exist
a subsequence (still denoted by u” ), finitely many periodic orbits xo, ..., %, € P(H)
with zo = z+ and x,,, = v, finitely many connecting orbits

UjGM(.’L'j,.’L'j_l;H,J), ji=1...,m,

and finitely many sequences sy, such that u” (s + s;,t) converges modulo bubbling to
uj(s,t). Moreover, the limit solutions satisfy

i E(u;) <limsup E(u") — £h. (27)

v—0o0

Jj=0

where £ is the total number of bubbles.

| —ut
Xo =X

Figure 7: Limit behaviour for Floer’s connecting orbits with bounded derivatives
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Proof of Proposition 3.1: The formula (10) shows that
na(z7) —na(e") + 27E(u) = p(u; H) = 1

for w € MY (z—,z+;H,J) and hence the energy inequality (25) is automatically
satisfied for sequences u” € M'(z~,z*;H,J). Moreover, the limit solutions u; €
M(zj,zj—1;H,J) in Corollary 3.4 satisfy

m m

St ) = 3 () = nnleson) + 20E(w)

= nu(z”) —nm(et) +27 ) B(u;)

< nu(z”) —nu(zt) +27E(u”) — 27¢h
= 1-2(N.

Here ¢ is the number of bubbles, the first equation follows from (10), the third in-
equality from (27), and the last equation from (10) and the fact that 7h = N. If
H € H,eg then Theorem 1.24 guarantees that pu(u;; H) > 1 for every j. This implies
that m = 1 and £ = 0, i.e. there is no bubbling and there is a single limit solution
u=1u € M(z~,z%;H,J). In this case one can show that u”(s + s¥,t) converges
to u(s,t) in the WP-norm on the noncompact domain R x S'. This shows that,
in the monotone case, the moduli space Mt (z=,zT; H,J) is compact for every pair
x* € P(H). Since this space is also a zero dimensional manifold it must be a finite
set. O

3.2 Floer homology

Continue with the monotone case and, for H € H,eg, consider the chain complex

CFy(H) = &y F{z).
z€P(H)
proz(z;H)=k(mod 2N)

Here F is a principal ideal domain (which we shall choose to be either of Zs, Z, or
Q). In the case F = Z, the boundary operator is defined by counting the connecting
orbits u running from z~ to 1 which satisfy u(u; H) = 1. For other coefficient rings
one has to take account of orientations. The latter is discussed in detail in Floer-
Hofer [12]. The rough idea is to prove first that the moduli spaces M(z~,z*) are all
orientable, and then to choose a system of coherent orientations under which Floer’s
gluing maps (discussed below) are orientation preserving. That such orientations exist
is proved in [12]. These orientations are not unique. As in the finite dimensional case
they involve one choice of orientation for each critical point z € P(H). With these
orientations in place one can define a number e(u) € {£1} for u € M (z=,z7; H, J)
by comparing this coherent orientation of M?! with the obvious flow orientation. The
Floer boundary operator is now defined by

" (y) = > > e(u)(z) (28)
pcz(m;Hz)i;:(—If()mod 2N) [U]EMl(y,W;HaJ)

for a periodic orbit y € P(H) with pcz(y; H) = k(mod 2N).
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Theorem 3.5 (Floer) If (M,w) is monotone and H € Hyeg then 0F 0 0F = 0.

Proof: In the case N > 2 the proof is as in the finite dimensional case. The key is
to understand the ends of the 2-dimensional moduli space M?(z,z; H,J). If N > 2
one proves as before that no bubbling can occur and the ends correspond to pairs of
connecting orbits v € M!(z,y) and u € M!(y,z). In other words, we can think of
/T/l\z(z, z) = M?(2,7)/R as a compact 1-manifold whose boundary is given by

M (z2) = ) M(zy) x M'(y,2). (29)

yEP(H)

This follows from Floer’s gluing theorem (see Section 3.3 below). Hence one obtains

> > Y ewe(u) =0 (30)

E€EP(H IO O
pop o emod 2y [WIEM (2,9) [u]€ M1 (y,2)

for every pair z,z € P(H) with pucz(z; H) = k + 1(mod 2N) and pcz(z; H) = k —
1(mod 2N).

In the case of minimal Chern number N = 1 there is an additional subtlety arising
from the presence of J-holomorphic spheres with Chern number

c(v) = /52 v*cp = 1.

The bubbling of such spheres cannot be excluded apriori. However, if such bubbling
does occur, then the remaining limit solution u must have zero energy and hence be
of the form u(s,t) = z(t) = z(t). Now there are two facts which prevent such bubbles.
The first is a more subtle version of the compactness theorem (discussed in Chapter 4
below) which asserts that the image of the bubbling sphere v : 2 — M must intersect
the remaining limit curve u(s,t) = z(t). But now, for a generic J, the J-holomorphic
curves with Chern number 1 form moduli space M(1;J) C Map(S?, M) of dimension
2n + 2. Dividing by the 6-dimensional conformal group G = PSL(2,C) we obtain a
moduli space M(1;J)/G of dimension 2n — 4. Taking account of the fact that each
sphere is 2-dimensional we obtain finally a space M(1;J) x S?/G of dimension 2n — 2.
Thus the points on J-holomorphic spheres of Chern number 1 form, for a generic
J, a codimension-2 subset of M, and for a generic H these spheres therefore do not
intersect the 1-dimensional periodic orbits of H. Hence no such bubbling can occur,
and we can proceed with the same argument as above. O

The Floer homology groups of a regular pair (H,J) are defined as the homology
of the chain complex (CF,(H),d%):

ker OF
im O
The key observation is that these homology groups are an invariant, i.e. they do
not depend on the almost complex structure or the Hamiltonian. Moreover, they are

naturally isomorphic to the ordinary homology groups of M. This is the content of
the following two theorems.

HF.(M,w,H,J;F) =

Theorem 3.6 (Floer) Let (M,w) be a monotone symplectic manifold. For two pairs
(H®,J*) and (HP,JP), which satisfy the regularity requirements for the definition of
Floer cohomology, there exists a natural isomorphism

®°° . HF,(M,w,H®,J*) — HF,(M,w,H?, J°).
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If (H7,J7) is another such pair then
1Y = 78 o P, P = id.

Theorem 3.7 (Floer) Let (M,w) be a monotone symplectic manifold. Then, for
every reqular pair (H*,J%), there exists an isomorphism

@ : HF,(M,w,H*, J*;F) » QHy(M;F) = @  H;(M;F).
j=k(mod 2N)
These maps are natural in the sense that
P o P> = 3>,

The Arnold conjecture for monotone symplectic manifolds (and general coefficient
rings) follows immediately from Theorem 3.7. The proofs will be explained in the next
three sections.

Exercise 3.8 Prove the naturality of Floer’s gradient flow equation (7). More pre-
cisely, suppose that u : R x R/Z — M is a solution of (7) and ¢; = @1 is a
loop of Hamiltonian symplectomorphisms, generated by the Hamiltonian functions
Kt:Kt+1 : M — R via

%wt = Xk, 0y, Yo = id.

Prove that the function @(s,t) = ;! (u(s,t)) satisfies
Byt + Jy (@)t — VH (@) = 0,

where ~ B
Je = oy, Hy = (Hy — Ky) o ¢y,

and the gradient is computed with respect to the metric induced by J;. Deduce that
the Hamiltonian loop ¢; induces an isomorphism of Floer homologies.

HF.(M,w,Hy, Ji) - HF,(M,w, (Hy — K¢) 0 o, 01 J)-

This isomorphism will not, in general, agree with the one of Theorem 3.6. One can
think of this as an action of the fundamental group of the group Ham(M,w) of Hamil-
tonian symplectomorphisms on Floer homology. This action has recently been used
by Seidel and Lalonde-McDuff-Polterovich to derive nontrivial information about the
fundamental group of Ham(M,w). O

3.3 Floer’s gluing theorem

The goal of this section is to provide more details for the proof of Theorem 3.5 and to
prepare the background for the proofs of Theorems 3.6 and 3.7. The basic construction
is very simple. Given two connecting orbits

veE M(z,y; H,J), u€ M(y,z; H,J),

with surjective Fredholm operators D, and D,,, one constructs a one parameter family
of approximate solution

HJR = U#Ru
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of (7) running directly from z to z. One then proves that the linearized operator D,
is surjective for large R and has a right inverse which satisfies a uniform bound, inde-
pendent of R. It then follows from the infinite dimensional implicit function theorem
that near wg there is a true solution wg € M(z,z; H,J) of (7). This construction
gives rise to a gluing map

tee : M(z,y3 H, J) x (Ro,00) x My, @5 H, J) = M(z,2:H,J).  (31)
This is not quite accurate, unless the index differences are 1 and so the moduli spaces
M(z y; H,J) and M(y,x H, J) are compact. In general, this map is only defined on
any given compact subset of M(z y; H, J) X M(y,x H,J) and the constants in the
estimtes will depend on this subset. With this understood, the gluing map (31) is a
diffeomorphism onto an open subset of M (z,z; H, J).

V(s+R,t) u(s-R,t)

y(t)

-R -R/2 R/2

Py

Figure 8: Floer’s gluing construction

Here are some more details of Floer’s gluing construction. The approximate solu-
tion is illustrated in Figure 8. Explicitly, it can be defined by

v(s + R, 1), s<—-R/2-1,

expyq) (B(—s — R/2)n(s + R, t)), —R/2—-1<s<-R/2,
v#ru(s,t) =< y(t), —R/2<s<R/2,

expyqy (B(s — R/2)6(s — R,t)), R/2<s<R/2+]1,

u(s — R, t), s>R/2+1,

where £(s,t),m(s,t) € Ty)M are chosen such that u(s,t) = exp,(&(s,t)) for all ¢
and large negative s and v(s,t) = exp, ) (n(s,t)) for all ¢ and large positive s. Here
B8 :R — [0,1] is a cutoff function equal to 1 for s > 1 and equal to 0 for s < 0. Let
us fix the two solutions v and v and assume that D,, and D, are surjective. The next
proposition shows that there is a uniformly bounded family of right inverses for the
operators Dp = Dy, for R sufficiently large.

Proposition 3.9 Suppose that H € Hreg, ,y,2 € P(H), u € M(y,z;H,J), and
v € M(z,y; H,J). Then there exist constants ¢ > 0 and Ry > 0 such that, for every
R > Ry and every n € W2P(R x S, (v#gru)*TM),

IDr* |l < cl|DRDR™ 1 - (32)
Proof: Let us denote

UR(S,t) = { U#Ru(s,t), s <0,

(4
3
&

I
@
3

Vi

(en]
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Note that vgr(s,t) = v(s + R,t) for s < —R/2 — 1 and ug(s,t) = u(s — R,t) for
s > R/2+ 1. By Proposition 1.21, the difference between vg(s,t) and v(s + R,t)
(in the C*-norm for any /) is exponentially small as R — 0o, and so is the difference
between ug(s,t) and u(s — R,t). Hence there exist constants Ry > 0, ¢ > 0, and
c¢1 > 0 such that, for every R > Ry and every n, € WYP(R x S1, ug*TM),

”nu”Wl,P <o ”Dun*nu”Lp ) ”Dun*nu”Wlm <a ”‘DUR‘DUR*nU”LP -

Similar inequalities hold with D,,,, replaced by D,,.
Now, for R > 2, we have

[ wr(s,t), ifs<0,
v ru(s,t) = { ur(s,t), ifs>0.

Note that v#gu(s,t) = y(t) for —R/2 < s < R/2. In order to establish the required
estimate for Dg = Dyy,y we fix a vector field n € WHP(R x S, (v#ru)*TM) and
define

nu(sﬂt) = ﬂR(s)n(Sﬂt) € TuR(s,t)M7
Uv(S,t) = (1 - ﬂR(s))n(Sat) € TvR(s,t)Ma
where Or(s) = B(s/R + 1/2) is a smooth cutoff function such that

D
s ={ 3 SRM 0ssRG) < SR <P SR

for R > Ry. Note that Dg*n, = Dy, "0, and Dg*n, = D, ,*n,. Hence we obtain the
following inequality.

Inllyre < ullypre + 70l
< o (1Dur ™ nullpe + 1 Dvr 0ol 0)
= ¢ (IDr*(Brn)llze + IDR*((1 = Br)N) |l £r)
% 460
< 2¢||DrR™nll s + 7 [Inll . -

The last inequality follows from the fact that Dg*(8rn) = BrDgr*n — Br'n and
|Br'(s)| < 2/R for all s. With 4cg/R < 1/2 we obtain an inequality

Inllyy1.0 < 4co [|DR L (33)
for all n € WHP(R x S, (v#gu)*TM). Now observe that
Duy*nu = BrDr*n — Br'n, Dy.*ny = (1 — Br)DR*n + Br'.
In particular, Dy, 0y, + Dy, "ny = Dr*n and hence

||‘DR*n||W1,P < ”Dua*nu”LP + ||Dvn*77v||Lp
< e (IDurDur Mullze + 1DopDog "m0l »)
< o (| Dr(BrRDR™ n — Br'M)| .,
+ || Dr((1 = Br)Dr*n + Br'n)| 1)

* 2cl * 461

< 20 1DRD Nl + 22 1Din - Dl + 2 il
* 261 * C2

< 2, IDRDR 1l s + 22 IDw s + 2 il
X 2¢1 + 4cper X

< 2aIDrDE e + ———F5— DRl -
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In the last step we have used (33). With (2¢; + 4cpc2)/R < 1/2 we obtain

IDE" Nl < 4er [IDRDR™ 0

as claimed. This proves the proposition. O

With the uniform estimates for the inverse established, it follows easily from the
implicit function theorem that, for R > 0 sufficiently large, there exists a unique
solution wg € M(z,z; H, J) near v#gru of the form

WR = expv#Ru(DR*n)

for some n € W2P(R x S, (v#ru)*TM). The details are standard and will not be
carried out here. If the original moduli spaces M\(z,y;H ,J) and M\(y,m;H, J) are
zero dimensional, then the images of the gluing maps describe precisely the ends of
the one dimensional moduli space M(z,z; H, J). In other words, the complement of

these images is a compact 1-manifold. This justifies the formula (29) in the proof of
Theorem 3.5.

3.4 Invariance of Floer homology

The proof of Theorem 3.6 is based on the following construction. We assume through-
out that J is fixed and discuss the dependence of the Floer homology groups on the
Hamiltonian function. Variations of the almost complex structure can easily be incor-
porated by an analogout construction. Given two regular Hamiltonians H%, H? € Hyeg
choose a homotopy H*® = {H;"é3 } from H® to HP such that

o8 _ Hy, fors < -1,
8t Hf, for s > 1.

Now consider the time-dependent version of equation (7) with H; replaced by H, ;.
This equation has the form

Bsu+ J(u)dyu — VHEY (u) = 0. (34)
We consider solutions of (34) which satisfy the limit conditions

lim w(s,t) = z*(¢), lim u(s,t) = 2°(t) (35)

§—>—00 §—00

for some periodic solutions z® € P(H®) and z° € P(HP). The solutions of (34)
and (35) form a moduli space

M(z%,2°) = M(z®, z°; H*P) = {u:RxS"— M : (34), (35)}
which, for a generic homotopy H?, is a smooth manifold of dimension
dim M(2%, 27 H*’) = ppa (z*) — pps(2”)(mod 2N).
As before, the local dimension near u will be denoted by p(u, H*%) and we write

MO (2, 2P H*P) = {u € M(2, 2% H*P) : p(u, H*P) =0} .

35



This is the zero dimensional part of the moduli space. As in Proposition 3.1 one proves
that this is a finite set for a generic homotopy H®?. Counting the elements of these
sets with appropriate signs gives rise to a homomorphism

P . CF,(H*) = CF.(HP)

PP (x*) = z z e(u)(z?).

zBeP(HP) ueMO(z>,2P)

defined by

The next lemma shows that this is a chain homomorphism and hence descends to
a homomorphism of Floer homologies. The subsequent lemma shows that the chain
maps ®°* satisfy the obvious composition rule (for catenation of homotopies) and
the third lemma shows that the induced map on Floer homology is independent of
the choice of the homotopy. The main technical ingredients in the proofs of all three
lemmata are Floer’s gluing construction and Gromov compactness.

Lemma 3.10 The above homomorphisms ®°% : CF,(H®) — CF.(H®) satisfies
9% 0 @ = §F 0 9.
Proof: Examining the 1-dimensional moduli space M (y®, 2°) one finds that
IM (y*, 2P HYP) = U/(/i\l(ya,xa;Ho‘) x MO (z®, 2P H*P)
ou

Ul MOe, v HOP) x M (4P, 2% HP).

This equality is to be understood with appropriate orientations and hence is equivalent
to the assertion of the lemma. (See Figure 9.) O

. 7

Figure 9: Floer’s chain homomorphism

Lemma 3.11 Let H*? be a regular homotopy from H* to H” and HP' a regular
homotopy from HP to HY. Define

oy _ H;‘fR,t, for s <0,
R,s,t HE;)‘R)t, fOT s Z 0,

for R > 0 sufficiently large. Then there exists an Ry > 0 such that, for every R > Ry,
H*Y is a regular homotopy from H® to H" and the morphism ®3* : CF,(H®) —
CF,(H") induced by this homotopy is given by

Y = 97 o pPe,
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Proof: This is again a gluing theorem which asserts that for R sufficiently large
one can glue together solutions in M(z®,z%; H*?) with those in M (z?,z7; H57) to
obtain direct connecting orbits from z* to =" corresponding to the homotopy Hp".
A compactness argument then shows that there are no other solutions for large R.
Hence there is a bijection

UMO(:ca,a:ﬂ;Haﬁ) x M%(2P, 27, HPY) — Mo(xa,:c'*;H;"’)
8

for R sufficiently large. One can show that this bijection is orientation preserving and
this proves the lemma. O

Lemma 3.12 If ngﬁ and Hlaﬂ are two regular homotopies from H® to HP, then the
two corresponding chain homomorphisms tI>g * and <I>f % are chain homotopy equivalent.
In other words, there exists a homomorphism T : CF,.(H®) — CF,(H") such that

% — ®y* = 99T + TH".

Proof: The idea is to choose a regular homotopy of homotopies H;\”ﬁs,t from H* to

HP which agrees with Hg"f’t for A = 0 and Hﬁf’t for A = 1. Then one considers the
parametrized moduli space

M,y {27 = {Ovu) 0 <A< 1, we M(a®,a®s HPP), p(us HY) = ~1}

This moduli space is a zero dimensional manifold (for a generic homotopy of homo-
topies) and the chain homotopy T : CF,(H®) — CF,(HP) is defined by

T(z®) =Y #M ' (z*,y°) (")

where #M (2, yP) is to be understood as counting with appropriate signs. Note
that this zero dimensional moduli space consists of finitely many pairs (A;,u;) with
0 < Aj < 1. Since the homotopies H5® and H{” are regular there cannot be any
connecting orbits with index —1 for A = 0 and A = 1. However, in a generic 1-
parameter family such orbits do occur for isolated parameter values. Counting these
gives rise to the chain homotopy equivalence T'. That T satisfies the required equation
follows again by examining the boundaries of the 1-dimensional moduli spaces (see
Figure 10). One finds

OIMO(y, y% {HPPY) = MO(y*,y% HYP) U MO (y2, P HYP)
UM Ly, 22 {HPPY) x M0, yP; HP)
B

UM e, 2% HY) x M7 (2, 4% {HP}).

T

The proof involves again Floer’s gluing argument and Gromov compactness. The
identity is to be understood with orientations, and this proves the lemma. O

Proof of Theorem 3.6: Let H%? be any regular homotopy from H® to H® and
denote by HP® the inverse homotopy. By Lemma 3.10, these homotopies induce chain
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Figure 10: The parametrized moduli space MO (y®,y?; {H"})

maps ®*0 : CF,(H®) = CF,(H?) and ®°* : CF,(H®) = CF,(H®). By Lemma 3.11,
the composition 7 o ®82 is equal to the map induced by some homotopy from H®
to itself. Now the constant homotopy induces the identity map on CF,(H®). Hence it
follows from Lemma 3.12 that ®2F o & is chain homotopy equivalent to the identity.
Hence 7 is a chain homotopy equivalence with chain homotopy inverse 7. Hence
®28 induces an isomorphism on Floer homology. O

3.5 A natural isomorphism

There are essentially two ways to prove that the Floer homology groups of a pair
(H, J) agree with the ordinary homology of M. The first is to use the independence of
the Floer homology groups of the Hamiltonian, and then to prove that, if H; = H is
a smooth time independent Morse function with sufficiently small second derivatives,
then the 1-dimensional moduli spaces of Floer’s connecting orbits consist entirely of
gradient flow lines of H. Once this is established, computing the Floer chain complex
reduces to the computation of the Morse complex of H, and hence the resulting Floer
homology groups agree with Morse homology, and hence, by Theorem 1.12, with the
singular homology of M. This method was used by Floer [11] and also in [47] and [19].

An entirely different approach was found by Piunikhin-Salamon-Schwarz [38]. The
idea is to consider perturbed J-holomorphic planes u : C — M which satisfy the
following conditions.

e z+— u(z) is a J-holomorphic curve for |z| < 1.

u(e2™(5+i)) satisfies (34) for s > 0 where Hy; = 0 for s < 0 and H,; = H; is
independent of s for s > 1.

u(e*™( 1) converges to a periodic solution z(t) = 2(t + 1) of (1) as s — oc.

u(0) € W¥(y; f) for some Morse function f : M — R and a critical point y.

One can think of these as J-holomorphic spiked disks, where the spike is the gra-
dient flow line from y to u(0) (see Figure 11). Without the condition u(0) € W*(y; f)
these perturbed J-holomorphic planes form a manifold of local dimension 2n—pug(z, u)
near u. Hence the condition u(0) € W*(y; f) gives rise to a zero dimensional moduli
space whenever the index difference is zero, i.e. inds(y) = pu(z,u). In the zero di-
mensional case counting the solutions with suitable orientations gives rise to a chain
homomorphism CM,.(f) = CF.(H). In [38] it is shown that this map induces an
isomorphism on homology HM,(f) — HF,(M,w;H,J). This construction can also
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Figure 11: The isomorphism between Morse homology and Floer homology

be used to prove that the corresponding isomorphism on cohomology identifies the
quantum cohomology structure on H*(M) with the pair-of-pants product on Floer
cohomology. For details see [38].

3.6 Calabi-Yau manifolds

Let (M,w) be a compact symplectic manifold whose first Chern class vanishes over

t
ma (M), i.e.
/ v*c; =0 (36)
S2

for every smooth map v : S — M. It is an immediate consequence of this condition
that the Conley-Zehnder index of a (nondegenerate) periodic solution z € P(H) gives
rise to a well defined integer

pr(z) =n — pez(¥s)

(see page 23), and hence Floer homology will be graded over the integers. However,
care must be taken with bubbling of J-holomorphic spheres of Chern number zero.
Such bubbling no longer leads to connecting orbits of strictly lower index. But the
good news is that spheres with Chern number zero form subsets of M of codimension
4, and hence will generically avoid the spaces of connecting orbits with index difference
1 or 2, since these form geometrically at most 3-dimensional sets.

More precisely, if ¢; vanishes on 72 (M) then, for a generic J € J(M,w), the moduli
space

ME(J)={v:8> = M : §;(v) =0, v is simple}

of J-holomorphic spheres which are not multiply covered is a smooth manifold of
dimension 2n. Dividing by the action of the reparametrization group G = PSL(2,C)
gives a space M?*(J)/G of dimension 2n — 6. Since each sphere is 2-dimenional we
obtain a space W?*(J) = M?*(J)xS?/G of dimension 2n—4 with the obvious evaluation
map ev : W¥(J) — M. The image of this map is the compact codimension-4 subset
of all points in M which lie on some J-holomorphic sphere (with Chern number zero).
For a generic Hamiltonian H € Heg this set will not intersect the moduli spaces
MY(z=,z; H,J) and M2(z~,zT; H,J) of connecting orbits with index 1 or 2. This
shows that no bubbling can occur for sequences of such connecting orbits.

With this understood, there is an additional difficulty arising from the presence
of possibly infinitely many connecting orbits with index difference 1, with energy
diverging to infinity. In other words, the moduli space M!(z,y; H,J) may not be
a finite set but there are finitely many connecting orbits in each homology class.
Counting the connecting orbits in their homology classes leads naturally to Floer
homology over Novikov rings [19].
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3.7 Novikov rings

Continue to assume (36) and let I' C Hao(M) = Ha(M,Z)/torsion be the image of
the Hurewicz homomorphism 7o (M) — Hy(M). Associated to the homomorphism
w : T' = R is the Novikov ring A = A,,. This is a kind of completion of the group ring
of T, reminiscent of the ring of Laurent series. The elements of the Novikov ring A
are formal sums of the form

A\ = Z )\AeZ'/riA

Ael

with A4 € Z, which satisfy the finiteness condition
#{AeT : M #0,w(A) <c} <

for every ¢ > 0. In other words, for each ¢ > 0, there are only finitely many nonzero
coefficients A4 with energy w(A) < ¢. The ring structure is given by

A % w= Z AAMBeZWi(A-i-B)‘
AB

Thus (A * )4 = > pAa_pus- It is a simple matter to check that the finiteness
condition is preserved under this multiplication.

Remark 3.13 (i) The Novikov ring can also be defined if the first Chern class does
not vanish over m3(M). In that case the Novikov ring carries a natural grading
given by the first Chern class via

deg(e?™) = 2¢, (A).

(ii) If ¢; # 0 we denote by Ay C A the subset of all elements of degree k. Then Ay is
a ring, but in general multiplication changes the degree via the formula

deg(A x p) = deg(}) + deg(p).-

In other words, Ay, is a module over Ag. Moreover, multiplication by any element
of degree k provides a bijection Ag — Ag. Note that Ay # 0 if and only if k is
an integer multiple of 2N where N is the minimal Chern number of M (defined
by <Cl,7T2(M)) = NZ)

(iii) If T' = Z then A is the ring of Laurent series with integer coefficients. This is
a principal ideal domain and if the coefficients are taken in a field then A is a
field. These observations remain valid when the homomorphism w : T' — R is
injective. (See for example [19].) In the case m2(M) = Z it is interesting to note
the difference between ¢; = 0 and ¢; = [w]. In both cases A, is the ring of
Laurent series but if ¢; = 0 then this ring is not graded and in general we cannot
exclude the possibility of infinitely many nonzero coefficients.

(iv) Novikov first introduced a ring of the form A,, in the context of his Morse theory
for closed 1-forms (cf. [34]). In that case T is replaced by the fundamental group
and the homomorphism 71 (M) — R is induced by the closed 1-form. O
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Floer homology revisited

It is useful to introduce a covering of the space LM of contractible loops in M with
covering group I'. For every contractible loop z : R/Z — M choose a smooth map u :
B — M defined on the unit disc B = {z € C : |z| < 1} which satisfies u(e>"%) = z(t).
Two such maps u; and us are called equivalent if their sum wu;#(—us) represents
a torsion homology class. We use the notation [z,u1] ~ [z,us] for equivalent pairs
and denote by LM the space of equivalence classes. The elements of LM will also
be denoted by Z. The space LM is the unique covering space of LM whose group
of deck transformations is the image I' C Ha(M) of the Hurewicz homomorphism
m2(M) — Hy(M). We denote by

T x LM — LM : (A, %) — A#7

the obvious action of T on £M. The symplectic action functional ag : LM =R
is defined by

1
(e = = [ wo- [ Hfaw)a
and satisfies
an (A#E) = an(F) — w(A)

for A € T. Let us denote by P(H) C LM the covering of the set P(H) of contractible
periodic solutions of (1).
The Floer chain complex can now be introduced as the set CF,(H) of formal sums

of the form
E= ) &(E)
FcP(H)
which satisfy the finiteness condition

# {7 € P(H) : & #0,an(@) > ¢} < oo
for every constant ¢ € R. The Novikov ring A, obviously acts on CF,(H) by

€= Y Aabe(A#E).

A€l zep(H)

Thus (A * &)z = >4 Aa&(—a)#s and the reader may check that these elements still
satisfy the required finiteness condition. Now one can proceed as before and define
the Floer boundary map

oF : CF,(H) - CF,(H)

by counting the connecting orbits in M (g, Z; H,J) in the case of index difference 1.
The pair (7, %) encodes the homology class of the connecting orbits, and in the case
of index difference 1 this moduli space is a finite set. The resulting Floer boundary
map is then a module homomorphism over the Novikov ring A, and hence the Floer
homology groups are modules over A,. The analogue of Theorem 3.7 for Calabi-Yau
manifolds is that the Floer homology groups of H and J are naturally isomorphic to
the singular homology of M with coefficients in the Novikov ring:

HF (M,w, H,J) = H,(M;A,).

The Arnold conjecture for Calabi-Yau manifolds follows immediately from this asser-
tion. For details see Hofer-Salamon [19].
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4 Gromov compactness and stable maps

The purpose of this lecture is to discuss how Gromov compactness for J-holomor-
phic curves leads to Kontsevich’s notion of stable maps and to describe a natural
topology on the space of stable maps. The last section deals with the Deligne-Mumford
compactification of the moduli space of Riemann surfaces of genus zero with marked
points.

4.1 Bubbling

Let (M,w) be a compact symplectic manifold of dimension 2n and J € J(M,w) be
a compatible almost complex structure. Suppose that v : C - M is a J-holomorphic
curve. With coordinates z = s + it on C this means that u satisfies the PDE

ou ou

The energy of u is defined as the integral

B(u) = /«: 10,u]? = /C ww.

Throughout we shall only consider J-holomorphic curves with finite energy. In the
first section we shall discuss the limit behaviour of sequences with uniformly bounded
energy. The following three facts play a central role.

0.

Remark 4.1 (i) The removable singularity theorem asserts that every J-holo-
morphic curve u : C — M with finite energy extends to S = C U {oc}. This means
that the function C — {0} = M : z — u(1/z) extends to a smooth map on C. A proof
can be found in [31].

(ii) By Lemma 3.2, there exists, for every J € J(M,w), a constant & = A(M,w, J) > 0
such that
E(u)>h

for every J-holomorphic sphere u : S2 — M.

(iii) If u” : C - M is a sequence of J-holomorphic curves such that

sup ||[du”||; < 00
v

then u” has a convergent subsequence. More precisely, the subsequence can be chosen
to converge uniformly with all derivatives on compact sets. The limit curve is again
a J-holomorphic curve and, if E(u”) < ¢ for all v, then the energy of the limit curve
is also bounded by c. This result extends to the case where u” is a sequence of J-
holomorphic curves and J¥ converges in the C*-topology to J € J(M,w). The proof
follows from standard elliptic bootstrapping techniques. For details see [31]. O

Let us now examine the case of a sequence of J-holomorphic curves v : C - M
with uniformly bounded energy but unbounded derivatives:

sng(u”) <oo,  lim [|du”[| e = oo.
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Such sequences do exist. Note, in particular, that the condition sup, E(u”) < oo is
equivalent to a uniform L2-bound on the first derivatives of u”. In contrast, a uniform
LP-bound on the first derivatives for some p > 2 would imply a uniform L*°-bound
and hence, by Remark 4.1 (iii), the existence of a convergent subsequence. That
such bounds cannot be obtained in the case p = 2 has an analytical and a geometric
reason. The analytical reason is the fact that p = 2 is a borderline case for the Sobolev
estimates (see Section 2.3). The geometric reason is the conformal invariance of the
energy and the resulting bubbling phenomenon, which was first observed by Sacks and
Uhlenbeck in the context of harmonic maps [44]. Here is how this works.
Suppose that z” € C is a sequence such that

lim |du”(2")| = oo, lim 2¥ = z.

V—> 00 V—00
Modifying the sequence slightly, without changing its limit, we may assume that there
exists a sequence 6” > 0 such that

lim §” =0, 1i_>m 0”|du” (2")| = oo, sup |du”| < 2|du”(2")].

L de el Bsv (zu)

(See the footnote on page 28.) Now consider the rescaled sequence

1

v’ (z) = u” (2" +€"2), = ——.
|du (27)]

This sequence has uniformly bounded derivatives on any compact subset of C. Namely,
for any R > 0 there exists a vg such that Re” < ¢” for v > vg. Hence |dv”(z)| < 2 for
|z| < R and v > vg. By Remark 4.1 (iii), this implies that there exists a subsequence
which converges, uniformly with all derivatives on compact subsets of C, to a J-
holomorphic curve v : C — M. This curve has finite energy and so, by Remark 4.1 (i),
extends to a J-holomorphic sphere. Since |dv(0)| = lim, o |[dv”(0)| = 1, the map v
is nonconstant. Hence, by Remark 4.1 (ii), it has energy

E(v) > h.

Now the energy of v” in Bg(0) is equal to the energy of u” in Bg.»(2”) which in
turn is bounded above by the energy of u” in an arbitrarily small ball B.(z) for v
sufficiently large. This means that in the large v limit the sequence u” has an energy
of at least % concentrated in an arbitrarily small ball about z. Hence, as in the proof
of Proposition 3.3, we have

lim lim inf E(u”, B:(z)) > h.

e—=0 v—o0
This implies that there can be only finitely many points zq,..., 2, near which the
derivative of u” tends to infinity. After passing to a suitable subsequence, we may
assume, by Remark 4.1 (iii), that u” converges uniformly with all derivatives on com-
pact subset of C — {z1,...,2,} to a J-holomorphic curve u. Invoking the removable
singularity theorem, we find that u extends to a J-holomorphic curve on S? = CU{oo}.

These arguments exhibit the convergence behaviour of a sequence u” of J-holomor-

phic spheres with uniformly bounded energy. They do not, however, give a complete
picture of the bubble tree. At each point, near which the derivatives of u” blow up,
several J-holomorphic spheres may bubble off and, moreover, the collection of all these
spheres forms a connected set. To see this it is necessary to refine the above rescaling
argument.
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Soft rescaling

Let us assume that v” : C — M is a sequence of J-holomorphic curves with uniformly
bounded energy E(u”) < ¢ and that a subsequenc has been chosen (still denoted by u”)
which converges, uniformly with all derivatives on compact subsets of C—{z1,..., 2z},
to a J-holomorphic curve u : C — M. Suppose further that the function z — |du” (z)|
attains its maximum in the (small) ball B,(z;) at the point 2z — 2; and that this
maximum tends to co. Then the above discussion shows that

;) = lim lim E(u”, B:(z;)) >
m(2;) El_rf(l)ygrolo (u”, Be(zj)) > I
for every j. Here we assume that a subsequence has been chosen such that the relevant
limits exist. We shall see that this number m(z;) is equal to the total energy of all
the bubbles splitting off at the point z;. To capture the “first” J-holomorphic sphere
bubbling off at 2 we choose 7 > 0 such that

B(u’, Buy () = m(z;) - (37)

[N

By definition of m(z;), the sequence €] > 0 converges to zero. Now consider the
sequence

vi(2) =u”(2] +¢€jz2).

A suitable subsequence, still denoted by v, has the following properties (see Fig-
ure 12).

(a) The function z — |dv} (z)| takes on its supremum (over a large ball) at 0:

|dvy (0)] = sup |dvy|.

r/e¥
/%5

Here we abbreviate B, = B,(0).

(b) The energy of v outside the ball of radius 1 is bounded by 7/2. More precisely,
for every R > 0 there exists a vg € N such that E(v;-’,BR — B;) < h/2 for
v > vg. This implies that no bubbling can occur outside the unit ball and hence
the derivative of v} on the annulus Bg — Bi4. is uniformly bounded for every
R > 0 and every € > 0.

(c) The sequence v} converges, modulo further bubbling, to a J-holomorphic sphere
vj : CU{oc} = M. Moreover, the image of the limit sphere v; is connected to
image of the original limit curve u. Namely, v;(co) = u(z;). A detailed proof can
be found in [19, 31, 37].

(d) For every j,

m(z;) = lim lim E(v}, Br). (38)

R—o00 v—00

(e) If the limit curve v; is constant then, for every r > 1,

lim E(v”, B, — B)) n (39)

v—00 2’

This means that the energy i/2 of the approximating curves v in the domain
B, — B; is concentrated in an arbitrarily small neighbourhood of the unit circle.
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u\)

Figure 12: The bubbling phenomenon

To prove (d) one can choose a sequence p7 — 0 such that E(u”, By (7)) = m(z;)
and examine the quotient p¥/e¥. If (38) does not hold then this quotient tends to
infinity and one can prove that the energy of u” in the annulus By (27) — By (1),
which converges to %/2, is concentrated in the subset Bpey (27) — By (27). More
precisely, there exists a constant ¢ > 0 such that

. v v v c n
Jim E(u”, Brey (2]) — Ber (25)) 2 (1 - logR) 2’

By (37), this implies

Vli_}rrgo E(vy,Bgr) = ul'gr;o E(u”, Brex (2)) = m(z;) — @g,

in contradiction to the assumption that (38) does not hold. This proves (d). Full
details are given in [19, 31]. If v is constant then, by (b), the limit on the right hand
side of (38) is independent of R > 1. Hence (39) follows from (d). In turn it follows
from (39) that, for the sequence v}, bubbling occurs on the unit circle. By (a), this
means that there is also a bubble at the origin. In summary, if the limit curve v; is
constant then the sequence v; exhibits bubbling at two or more points inside the unit
ball. This has two crucial consequences. Firstly, since the total mass of all the bubbles
of v} is equal to the mass m(z;) of the original sequence u”, it follows that, if this
mass is divided among two bubbles, each part is at most m(z;) — i. This enables us
to carry out an induction argument, replacing u” by v}, which must terminate after
finitely many steps. Secondly, we observe that, if the limit curve v; is constant, it is
connected at three or more points to other J-holomorphic curves in the bubble tree.
Namely, at z = oo it is connected to u, and at z = 0 and some point on the unit circle
it is connected to the next bubbles in the induction argument. This observation leads
naturally to the notion of a stable map as a tree of J-holomorphic spheres, where
each constant sphere is connected to at least three other curves in the tree (at distinct
points). This condition ensures that there are only finitely many automorphisms which
preserve the curve.

4.2 Stable maps

The concept of a stable map was introduced by Kontsevich [25]. We begin with the
definition of a tree as a connected graph without cycles. Think of a tree as a finite
set (of vertices) equipped with a relation E such that two vertices are related by E iff
they are connected by an edge.
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Definition 4.2 A tree is a finite set T with a relation E C T x T satisfying the
following azioms.

(symmetric) If aES then BEa.

(anti-reflexive) If aEQ then o # (.

(connected) For all a,3 € T with a # (3 there exist o, ..., Ym € T with v = a and
Ym = B such that v;Ev;y1 for all i.

(no cycles) Ifyg,...,Ym € T with v;Evit1 and v; # Yiyo for all i then vo # Ym.-

A map f:(T,E) - (T, E) is called a tree homomorphism if f~'(&) is a tree for

all & € T and, for all o, B € T with aEB and f(a) # f(B), we have f(a)Ef(B). It is

called a tree isomorphism if it is bijective and both f and f~' are tree homomor-
phisms.

Figure 14: Stable maps

For future reference it is useful to introduce some notation. For every pair a, 8 € T
with a # f there exists a unique ordered set of vertices 7g,...,¥m € T such that
YiEYit1, Vi # Yit2, Yo = @, and v, = (. We call this the chain (of edges) running
from «a to 3 and denote the set of vertices belonging to this chain by

[a,8] =[B,a] ={vi : i=0,...,m}.

Cutting any edge aE3 decomposes the tree T" into two components. The component
containing 3 will be denoted by Top and is given by Tpog = {y € T : 8 € [a,7]} . This
set is called a branch of the tree T (see Figure 13). Note that T is the disjoint union
of {a} and the branches T,g over all § € T with aEB. Moreover, T = Tog U Tgq
whenever o F 3.
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Definition 4.3 (Stable maps) Let (M,w) be a compact symplectic manifold and
J € J(M,w). A stable J-holomorphic curve of genus zero in M with k&
marked points, modelled over a tree (T, E), is a tuple

(,2) = ({tataer; {Zaptars, {i, zit1<i<k)

with the following properties. For each o € T, uq : S> = M is a J-holomorphic

sphere, for all a,3 € T with aEB, 248 € S%, and (a1,21),..., (ax,2x) are finitely

many points in T x S2, satisfying the following conditions (see Figure 14).

(1) If o, B € T with aEQB then ua(zap) = us(28a)-

(ii) If aEB, aExy, and B # v, then 2a3 # Zavy- If a; = aj with @ # j then z; # z;. If
o; =« and oEf then z; # zqp.

(iii) If uy is a constant function then the set
Zo=Zo(w,z) ={24p : PET, aEB}U{2; : 1 <i<k,a; =0}
consists of at least three elements.

If (u,z) is a stable map then the tree T carries natural weights

me(u) = E(ug) = /52 Uy w.

The weight m, can only be zero if the a-sphere carries at least three special points.
It is useful to introduce the notation

Ea(u,Q):/ua*w+ Z maqp(u), mqp(u) = Z E(u,),
¢ zajgn V€T ap

for a, 3 € T with aEB and any open set 2 C S2. Then the total energy

B(w) = Y E(ua)

a€cT

of the stable map (u, z) is equal to E, (u, S?) for any a € T.

There is a natural equivalence relation on the set of stable maps.® The equivalence
relation is essentially given by complex diffeomorphisms of the domains of the curves
which identify the maps, the singular points, and the marked points. Now every com-
plex automorphism of the 2-sphere has the form of a fractional linear transformation
(also called M6bius transformation)

az+b

—be =1.
ard ad — bc

p(z) =

Here the numbers a, b, ¢, d form a complex 2 x 2-matrix with determinant 1. Since the
Mbobius transformations associated to (a,b,c,d) and (—a, —b, —c, —d) are equal, the
group of Mobius transformations can be identified with the group

G = PSL(2,C) = SL(2,C)/{+1}.

6Strictly speaking, trees do not form a set but a category. So the collection of tuples (u,z) with
the stated properties, which are modelled over trees, is not actually a set. However, if we restrict
our definition of trees with m vertices to meaning a relation on the set {1,...,m} with the stated
properties then the stable maps in M form a set.
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Definition 4.4 (Equivalence) Two stable J-holomorphic curves
(0,2) = ({Ua}aeT> {2ap}arps, {0, 2i}1<i<k),

(0,2) = ({Ga}tocdr {Zaptaip {0 Ziti<ick)
of genus zero in M with k marked points are called equivalent if there exists a tree

isomorphism f : T — T and a collection of Mébius transformations ¢ = {¢ataecT
such that the following holds.

(i) Foralla €T, (o) = uq 0 pa -
(ii) For all o, B € T with aEB, Z5(a)5(3) = Pa(2ap)-
(iii) Fori=1,...,k, &; = f(ay) and Z; = @q,(2;).

Definition 4.5 (Gromov convergence) A sequence

(u”,2") = ({ug Yaerv, {2aptarr s, {07, 2{ h<i<k)

of stable J-holomorphic curves with k marked points is said to Gromov converge
to a stable J-holomorphic curve (u,z) = ({ta}taeT,{208}ars, {0, zit1<i<k) if, for
v sufficiently large, there exists a surjective tree homomorphism f¥ : T — TV and a
collection of Mébius transformations {©%}aeT such that the following holds.

(i) For every o € T the sequence u;,,(a) o@¥ : 8% - M converges to u,, uniformly
with all derivatives on compact subsets of S*> — Z,. Moreover, if 3 € T such that
aFEg3, then

maﬁ(u) = gl_r}(l) ull)néo Ef”(a) (u”, Yo (Be (za,@)))'

(ii) Let o, B € T such that aEB and let v; be some subsequence. If f*i(a) = ¥ (B)
for all j then (pol)~' o a,og’ converges to zqp, uniformly on compact subsets of
S2—{zga}. If f¥i (@) # f¥i(B) for all j then zqp = limjﬁm(gozj)_l(z;ij (a) 53 (8))"

(iii) Fori=1,...,k, of = f"(e;) and z; = lim, o0 (@%,) "1 (2}).

The previous definition is somewhat complicated and it is useful to record its
meaning in the case where the trees T all consist of single points. This means
that each u” : S2 — M is a single J-holomorphic sphere equipped with % distinct
marked points 27, ..., 2}. Such a sequence Gromov converges to a stable map (u, z) =
({vataer, {zaptars, {@i, zi}1<i<k) iff there exist sequences ¢% € G such that the
following holds.

(i) For every a € T the sequence u” o ¢% : S — M converges to u, uniformly with
all derivatives on compact subsets of $% — Z,. Moreover, if 3 € T such that o E3,
then

Mmap(u) = ll_rf(l) Vli_{go E(u” o ¢y, B:(2a8))-

(ii) If o, 8 € T with aEf then (p%) 1o ¢ converges t0 Zqg, uniformly on compact

subsets of S? — {zg4}-

(iii) Fori=1,...,k, z; = lim,00 (%, ) 1 (27).
Note that the first two conditions here summarize the convergence behaviour of se-
quences as discussed in Section 4.1. In that case there are no marked points and the
third condition can be ignored. Definition 4.5 is the natural generalization of this

concept of convergence to sequences of stable maps modelled on more complicated
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trees. Here we do not assume that the maps in the sequence are all modelled on the
same tree. Although it is always possible to choose a subsequence modelled on the
same tree, the definition should allow for sequences of stable map which do not all
belong to the same stratum (tree structure) in the space of stable maps. Moreover, if
the limit curve has nontrivial automorphisms, then the tree homomorphisms f* may
not be uniquely determined by the sequence (u”,z”) and its limit (u, z).

Fix a spherical homology class A € Hy(M,Z) and denote by

Moga = Mo, a(M,.J)

the set of stable J-holomorphic curves (u, z) of genus zero in M with k marked points
which represent the class A. The quotient space will be denoted by

Mo j,a = Mog,a(M,J) = Moy a(M,J)] ~ .

Thus the elements of Mo, 4 (M, J) are equivalence classes of stable maps in M under
the equivalence relation of Definition 4.4.

Definition 4.5 defines a topology on this quotient space, called the Gromov topol-
ogy. A sequence of equivalence classes [u”,z”] converges to [u,z] in this topology if
(u”,2”) Gromov converges to (u,z). A subset ' C Mg a(M,J) is called Gromov
closed if the limit of every Gromov convergent sequence in F' lies again in F. A sub-
set U C Mo, ,a(M,J) is called Gromov open if its complement is Gromov closed.
That this defines a topology on Mg, 4(M,J) is obvious. However, that convergence
with respect to this topology is equivalent to Gromov convergence is not immediately
obvious.

Remark 4.6 Let (X,U) be a topological space in which limits are unique and, for
every ¢ € X and every A C X, we have z € cl(A) if and only if there exists a sequence
T, € A converging to z. Consider the space

CcXxXxN

of all pairs (zo, (xn),) of elements o € X and sequences z, € X such that z,
converges to xg. Then the collection C of convergent sequences has the following
properties.

(Constant) If z, = z, for all n € N then (zq, (z,)n) € C.

(Subsequence) If (zg,(zn)n) € C and g : N — N is strictly increasing, then
(w0, (Tg(n))n) €C.

(Subsubsequence) If, for every strictly increasing function g : N — N, there exists
a strictly increasing function f : N — N such that (2o, (2g0f(n))n) € C, then
(zo, (zn)n) €C.

(Diagonal) If (zo,(zx)r) € C and (xk, (zk,n)n) € C for every k then there exist
sequences k;,n; € N such that (zo, (z; n;)i) € C.

(Uniqueness of limits) If (zg, (z,),) € C and (yo, (zn)r) € C then z¢ = yo.

The topology can be recovered from the collection C of convergent sequences, as the
collection ¢ C 2% of all subsets U C X such that, for all zg € U and all sequences
Zn € X with (zo, (x5)n) € C, there exists an N € N such that n > N implies z,, € U.
Starting with a collection of sequences C C X x X" one obtains a topology without
imposing any axioms. The “Subsequence” axiom guarantees that, for every subset
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F C X, X —F €U if and only if zyg € F whenever there exists a sequence x,, € F
such that (zo, (xr)n) € C. The “Constant” and “Diagonal” axioms are needed to show
that the closure of a subset A C X consists of all elements xg € X for which there
exists a sequence z, € A such that (zo,(2zn)n) € C. All five axioms are needed to
prove that a sequence z, € X converges to xg with respect to the topology U if and
only if (%o, (zr)n) € C. Details are left as an exercise. O

It is obvious from the definitions that the collection of all Gromov convergent
sequences in Mo ,4(M, J) satisfies the “Constant” and “Subsequence” axioms.

Exercise 4.7 Let (u,z) = ({¢a}aeT, {2ap}aEs; {0, 2i }1<i<k) be a stable J-holomor-
phic curve of genus zero with k& marked points and fix a sufficiently small constant
e > 0. For any other stable map (u',2") = ({ug}arer, {245 Yo g, {0 2 }1<i<k)

[2iag !
with & marked points define the real number

O uz(u',2') = inf inf su su d(u' 0 Pa,U )
cuz(W,2) ,nL, {%}QGT{ WP R e 0 P e

flai)=al

+ S%I; |Ea (u, B:(zap)) — Ej(q) (v, ¢a (BE(za,B)))|

+ sup sup d (9051 0 Pa, zﬁa)
«EfB 52-B.(243)
Fa)=F(8)

+ sup d (cp_l (z' o ) ,25a) + sup d(p;'(2),z)
f(:;i?(ﬁ) B F(3)f(a) 1<i<k
Here the infimum runs over all surjective tree homomorphisms f : T — T’ which
satisfy f(a;) = o/ for all i and all tuples {¢q }acr € GT. The number ¢ > 0 is chosen
such that E(uqa, B:(203)) < h/2 and B:(243) N B:(2ay) = 0 whenever aES, aE~y and
B # 7. Note that E,(u, B:(248)) = E(ta, B:(2a8)) + mapg(u).

Prove that a sequence (u”,z") Gromov converges to (u,z) if and only if the se-
quence of real numbers §” = 6.  ,(u”,z") converges to zero. Prove that the function
0cu,z is lower semi-continuous with respect to the Gromov topology in the domain
Ocu,z < d for § > 0 sufficiently small. Deduce that Gromov convergence satisfies the
“Subsubsequence” and “Diagonal” axioms. O

Theorem 4.8 (Uniqueness of limits) Let (u”,z") be a sequence of stable J-holo-
morphic curves of genus zero with k marked points which Gromov converges to two
stable maps (u,z) and (4,%). Then (u,z) is equivalent to (Q,Z).

Theorem 4.9 (Gromov compactness) Every sequence (u”,z") of stable J-holo-
morphic curves of genus zero with k marked points with sup, E(u”) < oc has a Gromov
convergent subsequence.

Theorem 4.10 (Second countable) The topology of Mo i, a(M,J) has a countable
basis.

Corollary 4.11 Mg, a(M,J) is a compact metrizable space.
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Proof: By Theorem 4.10, each point in M 1, 4 (M, J) has a countable neighbourhood
basis and, by Theorem 4.8, limits are unique. Hence Mg 4(M,J) is a Hausdorff
space.” By Theorem 4.9, the space is sequentially compact. Now every sequentially
compact topological space with a countable basis is compact.® Hence Mg g, 4 (M, J)
is a compact Hausdorff space. Hence the result follows from the fact that a compact
Hausdorff space is metrizable iff it has a countable basis (cf. Kelley [24]). O

The proof of Theorem 4.9 follows essentially from the arguments in section 4.1
which, in a slightly different form are also contained in [19, 31, 37]. Full details of the
proofs of all three theorems 4.8, 4.9, and 4.10 can be found in [21]. It is interesting to
discuss the special case, where the target space M is a single point, in more detail. In
this case Mg, a(M,J) = My, is the Deligne-Mumford compactification of the mod-
uli space of k distinct marked points on the 2-sphere. In this situation Corollary 4.11
can be strengthened to the assertion that Mg ; naturally admits the structure of a
compact smooth manifold. This will be discussed in the next section.

Exercise 4.12 Consider the target space M = S? with the standard complex struc-
ture and denote by L € H?(S?;Z) the positive generator. Prove that the moduli space
Mo ,0,..(S?,1) is a single point. Prove that there is a bijection

Mo,o,zL(Sa,'i) ~ CP2.

Hint: The singular stratum (consisting of equivalence classes of stable maps modelled
over a tree with 2 vertices) can be naturally identified with CP! via the image of
the unique double point under the stable map. The open stratum is the space of
equivalence classes of rational maps u : S? — S2 of degree 2 under the equivalence
relation

Uy ~ U2 <~ 3(,06G3U2=U10(p.

Prove that this open stratum can be identified with C2. Namely, every rational func-
tion of degree 2 has two distinct critical values, and this pair of critical values (up to
reordering) determines the equivalence class. O

Exercise 4.13 As in the previous exercise consider the target space M = S? with the
standard complex structure. Examine the limit behaviour of the sequence of rational
maps
(=142 GE+1+12 -4+ L) z+2+ D)

(z—1)2 (z +1)? (z-1) (z+ 1)

of degree six. Find the limit stable map and prove that u,, Gromov converges to your
limit. Hint: The limit is a stable map, modelled over a tree with six vertices, two
each of degree 0, 1, and 2. O

un(z) =

"Let x and y be distinct points in a topological space with countable neighbourhood bases and
unique limits. Let {Un}n and {V5,}» be countable neighbourhood bases for z and y, respectively. If
U, NV, # 0 for all n then any sequence z, € U, NV, converges to both x and y. Hence uniqueness
of limits implies that U, NV, = 0 for some n.

8Every open cover has a countable refinement {Un},cN, consisting of all those elements from the
basis which are contained in some element of the cover. Suppose that this refinement does not have
a finite subcover. Then there exists a sequence =, € U, such that z, ¢ Uy, for m < n. Choose a
convergent subsequence z,; — . Then x € Uy, for some m. Hence there exists an 49 € N such that
Zn; € Un for ¢ > i9. Hence xp,; € Uy, for some n; > m, a contradiction.
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4.3 Deligne-Mumford compactification

We begin by repeating the formal definition of a stable map in the simplified context
where the target space is a point.

Definition 4.14 A stable Riemann surface of genus zero with n marked

points, modelled over a tree (T,E), is a tuple z = ({2a8}aBg, {0 2i1<i<n)

consisting of points zq3 € S? for a, 8 € T with aEB and pairs (a;,2;) € T x S? for

i =1,...,n such that the following holds.

(1) If aEB, aE~, and B # vy, then zqg # 2Zavy- If i = a with i # j then z; # z;. If
a; = o and aEf then z; # zag.

(ii) For each oo € T the set

Zo=2Zy(z) ={2ap : BET, aEF}U{2; : 1<i<n,a; =a}
contains at least three elements.

Definition 4.15 Two stable Riemann surfaces

z = ({2ap}aps, {0i, 2i}1<i<n), z = ({Zap}aipr Qs Zit1<i<n)

of genus zero with n marked points are called equivalent if there exists a tree isomor-
phism f: T — T and a collection of Mobius transformations ¢ = {Yq}acT such that
the following holds.

(i) If o, B € T with aEB then Z¢(a)(3) = Pa(Zap)-

(ii) Fori=1,...,n, & = f(a;) and Z; = pq,(2).

Definition 4.16 A sequence z” = ({2}3}arvp, {0}, 2] }1<i<n) of stable Riemann sur-
faces of genus zero with n marked points is said to DM-converge to a stable Riemann
surface 2 = ({2ap}arp, {0, 2it1<i<n) if, for v sufficiently large, there exists a sur-
jective tree homomorphism f¥ : T — TV and a collection of Mébius transformations
{@% }aeT such that the following holds.

(i) Let o, p € T with aEB. If f¥i(a) # f¥(B) for some subsequence v; then
. viy—1¢ Vi
Zaf = jlggo(‘Pa ) (zf”j (a)fi (,3))-

If fYi(a) = f%i(B) for some subsequence v; then (pa)~' o gogj converges to zqg,
uniformly on compact subsets of S* — {234}

(if) Fori=1,...,n, o = f“(a;) and z; = lim, 00 (¢%,) " (2Y).

Consider the moduli space My, of equivalence classes [z] of stable Riemann sur-
faces of genus zero with n marked points under the equivalence relation of Defini-
tion 4.15. This quotient space inherits a topology from Definition 4.16 as described in
the previous section. The goal of this section is to explain how My , naturally admits
the structure of a compact smooth manifold. To begin with let us denote by

S%x.--xS2—A

M= =2

the space of equivalence classes of ordered n-tuples of distinct points in S? under the
diagonal action of the conformal group G = PSL(2,C). This quotient is the open
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stratum in Mg ,.? We shall use cross ratios to construct an embedding of My ,, into
(8?)N for N = (}). Our embedding is reminiscent of a construction by Fulton and
MacPherson in [15] for higher dimensional varieties. That paper also contain more
references about the moduli space Mg 5.

The basic observation is that the relative position of four distinct points on the
2-sphere is, up to complex isomorphisms, determined by the cross ratio. To see this
note that, for any three distinct points zg, 21,22 € S? = C U {0} there is a unique
fractional linear transformation ¢ € G which sends zg to 0, 21 to 1, and 22 to co. This
transformation is given by

(21 — 22)(23 — 20)
(20 — 21) (22 — 23)

©(23) = w(20, 21,22, 23) =

The cross ratio is well defined for (2o, 21, 22, 23) € (§%)* — A3 and satisfies

o0, if zg =21 or 29 = 23,
w(20, 21, 22, 23) = 1, if 2o = 22 or z3 = 21, (40)
0, if zg =23 o0r z; = 25.

Here Az = {(20,21,22,23) : 3i < j <k 3 z; = zj = 21} denotes the set of quadruples

with three equal points. Moreover, the cross ratio is invariant under the diagonal

action of G, meaning that w(¢(20),9(21), 9(22), p(23)) = w(zo, 21, 22, 23) for p € G.
Let us now introduce the maps wijx¢ : Mg , = S? given by

wijre(2) = w(2i, 2, 2k, 22) (41)

for any four distinct integers 4, j,k,¢ € {1,...,n}. We claim that these maps extend
continuously to Mo, that they collectively form an injection of My, into (S2)V,
that this injection is a homeomorphism onto its image, and that this image is a smooth
(in fact algebraic) submanifold of (S2)V.

Exercise 4.17 Prove that the maps wijre : Mg, — S? defined by (41) satisfy

Wijke
Wjike = Wijer = 1 — Wijke, Wigje = ————, (42)
Wijke — 1
Wijkm — 1
(1, 00, Wijke, Wijkm) € Az = Wjpgm = ———————— (43)

Wijkm — Wijke
for any five distinct integers i, j, k,£,m € {1,...,n}. O
It is useful to introduce the notation
Zn = {(i,j,k,€) € N* : i,j,k, £ are pairwise distinct and <n},
and write the elements of (S2)Z» in the form w = {ws}sez, -

Proposition 4.18 The maps wijre : M ,, — S* defined by (41) extend to continuous
functions Mo, — S?, still denoted by wijre. The resulting map

Mo = (S 1z {wi(2)} rez,

is bijective and its image is the set M, C (S?)X of all tuples w = {wr}rez, which
satisfy (42) and (43).

9We denote by Mo,» what others denote by Mpy,, and by Ma,n what others denote by Mo, .
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Proposition 4.19 The map Mo, — (S?)I» of Proposition .18 is a homeomorphism
onto its image.

Proposition 4.20 The image of the map Mo, — (S%)I* of Proposition 4.18 is a
smooth submanifold of (S%)%.

Below we sketch the main ideas of the proofs. Full details are given in [20]. For

any stable Riemann surface z, any @ € T, and any i € {1,...,n}, denote
o= Ziy ifaz-:a, (44)
o Zap, if a; € Typ.

If a # a;, then one can think of z,; as the unique singular point on the a-sphere,
through which it is connected to the sphere on which z; lies, namely, the «;-sphere
(see Figure 15).

Figure 15: Marked points

Exercise 4.21 Let z = ({208}aEs, {®, 2i}1<i<k) be a stable Riemann surface with
n marked points. Prove that, if a, 8 € T with aEfS and 2z4; # 2q8, then zg; = 254. O

Proof of Proposition 4.18: The proof consists of four steps. The first two steps
are the definition of the map My, — (S%)Z* and their proofs are easy exercises. The
third step is injectivity. The fourth step identifies the image with M,,.

Step 1: Let z be a stable Riemann surface of genus zero with n marked points. Then
for any three distinct indices i,j,k € {1,...,n} there exists a unique vertex a € T
such that za; # Zaj # Zak 7 Zai (see Figure 16).

a;

ay

Figure 16: A tree triangle

Step 2: Let z be a stable Riemann surface of genus zero with n marked points and
suppose that the integers i,j,k, £ € {1,...,n} are pairwise distinct. Then there exists
an o € T such that (2ai, Zaj, Zak, 2at) ¢ As. The number

Wijke(2) = W(Zais Zaj, Zaks Zat)
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is independent of the choice of this a.

The existence of a is obvious from Step 1. Moreover, if the points 24i, 2aj, Zak, Zat
are all distinct, then « is unique. If not then w(2ai,2aj, 2ak, 2at) € {0,1,00} and a
simple combinatorial argument shows that this number is independent of a.

Step 3: Two stable Riemann surfaces z and Z of genus zero with n marked points are
equivalent if and only if wi(z) = wy(2) for all I = (i,5,k,0) € Z,,.

This is proved by induction over the number of vertices. The induction step is to
remove an endpoint from the tree. A set of indices I C {1,...,n}, corresponding
to the marked points on a given endpoint of the tree, can be characterized by the
conditions

ii' €1, j,j' ¢1 = wijy = oo, (45)
i,il,ill el, j ¢ I - Wit 411 § # o0. (46)
Given any such set one can reduce the number of vertices by replacing {1,...,n} with

{1,...,n} — I and reordering.

Step 4: Let w = {wijre} € (S?)%~ be given. Then there exists a stable Riemann
surface z of genus zero with n marked points such that wijre = wijre(z) for all i, j, k, ¢
if and only if w satisfies (42) and (43).

This is again proved by induction over the set of vertices. The key point in the
induction is to prove that, for every tuple w = {w;;re} which satisfies (42) and (43),
there exists a nontrivial subset I C {1,...,n} which satisfies (45) and (46). Here
nontrivial means that I # 0 and I # {1,...,n}. For more details see [20]. O

Proof of Proposition 4.19: For any sequence z” of stable Riemann surfaces of
genus zero with n marked points and any z one proves that the following are equivalent.
(a) z¥ DM-converges to z.

(b) For v sufficiently large there exists a surjective tree homomorphisms f* : T — T
and Mobius transformations ¢ € G such that f¥(a;) = @/ and

Zai = Vlgn;o(wZ)*l(Z?u(a>i)

fora €T and i€ {1,...,n}.
(c) For any four distinct integers 4, j, k,£ € {1,...,n}, wijke(z) = lim, o0 w;jre(2").
The proof of (a) <= (b) = (c) is fairly straight forward. The hard part is to show
that (c) implies (b). The key point here is the observation that, for any two stable

Riemann surfaces z and z' of genus zero with n marked points, there exists a surjective
tree homomorphism f: T — T' with f(o;) = of for all 4 if and only if

Wijke (ZI) =0 — wijkg(z) =0

for all ¢,j,k,¢ € {1,...,n}. For more details see [20]. O

Proof of Proposition 4.20: The proof is based on an explicit construction of
coordinate charts. Given a point [z] € My, we must pick out n — 3 of the cross
ratios from which all the others can be reconstructed (in a neighbourhood of the
point {wr(z)}1ez,) as smooth functions of the given n — 3 cross ratios. The choice
of the n — 3 coordinates is geometric. If there exists a marked point z,, such that
the corresponing vertex a,,, has at least four special points, then there is a crossratio
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Wi, jmkmm Which completely determines the position of the point 2z, and hence all
other cross ratios involving the point z,,. Now remove the point z,, and proceed by
induction until there is no marked point left which lies on a sphere with at least four
special points. Next choose a marked point z,, lying on an endpoint «,, = «a of the
tree. Then there is precisely one other marked point 2, with ay,, = o and precisely
one vertex § with aEB. The marked points z;,, and z;,, should be chosen such that
28in, 7 28 (see Figure 17). Then the cross ratio w;,, j,.k,,m uniquely determines the
position of z,, in a neighbourhood of the given stable Riemann surface. Now proceed
again by induction to find the required n — 3 coordinates. For more details see [20]. O

m B \
==

Figure 17: Coordinates for Mg,

©

Exercise 4.22 Prove that Mg 4 = CP! and
Mo = CP2#4CP" = (S2 x S?)#3CP".

Examine the natural projection Mg, — Mg n—1 and describe it with the above
identifications in the case n = 5. Hint 1: The fiber of the projection is the curve
corresponding to the point in Mg ,—1. In the case n = 5 there are three exceptional
fibers, corresponding to the three special points in Mg 4. Think of the fibration as
a family of quadrics passing through four generic points in the (complex projective)
plane. The three singular fibers correspond to the three pairs of lines passing through
these points. Blow up the four points to obtain Mg s (see Figure 18). Hint 2: Fix
three points at zo = 0, z1 = 1, 22 = 0o. Show that M 5 consists of pairs (23, z4) which
are not equal to the three pairs (0,0), (1,1), (00, 00), together with three 2-spheres
representing the possible configurations which arise from a collision of both z3 and
z4 with z; for ¢ = 0,1,2. Examine neighbourhoods of these 2-spheres to obtain the
product S? x S? with three points on the diagonal blown up. O

e/

Figure 18: Three pairs of lines determined by four generic points
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5 Multi-valued perturbations

In this lecture we return to the proof of the Arnold conjecture. We shall assume
throughout that (M, w) satisfies (4) with a negative factor, i.e.

1 (v) = Tw(v)

for all smooth maps v : $* & M and some constant 7 < 0, where ¢;(v) = [v*¢; and
w(v) = [v*w. This negative monotonicity condition implies that every J-holomorphic
sphere in M has negative Chern number. The first section explains the difficul-
ties which arise in the compactness theorem from the presence of multiply covered
J-holomorphic spheres with negative Chern number. In the spring of 1996 several
groups of researches found methods to overcome these difficulties. The first paper
which appeared was by Fukaya-Ono [14]. Other approaches are due to Liu-Tian [28§],
Ruan [42], Siebert [51], and Hofer-Salamon [20, 21, 22, 23]. The approach discussed
here was developed in [22, 23].

Section 5.2 describes an axiomatic setup for multi-valued perturbations of the 9-
equation, which destroy multiply covered J-holomorphic spheres. The existence of
such pertubations is proved in Section 5.3. Section 5.4 deals with the resulting moduli
spaces. They are no longer smooth manifolds, but instead are branched manifolds with
rational weights. Section 5.5 deals with the compactness problem for these moduli
spaces. Section 5.6 discusses the definition of the Gromov-Witten invariants, and
Section 5.7 describes how the constructions of this lecture lead to Floer homology
over the rationals. The analytical details are given in [22, 23].

5.1 J-holomorphic spheres with negative Chern number

Fix an almost complex structure J € J(M,w) and denote by M(k;J) the moduli
space of J-holomorphic spheres v : §2 — M with Chern number ¢; (v) = k. Under our
assumptions this moduli space is only nonempty when k£ < 0. For a generic almost
complex structure J the subset

M?(k; J) € M(k; J)
of simple spheres is a smooth manifold of dimension
dim M?®(k; J) = 2n + 2k.

Let us now fix a smooth time dependent Hamiltonian H; = H;1; : M — R and
consider a sequence
u’ € M(z~,2t; H,J)

of Floer connecting orbits, i.e. solutions of (7) and (8). Let us suppose that the index
of each u” is one, i.e.

p(w’, H) = 1 = ng(a”) - (@*) + 27 B(”).

This formula shows that the energy E(u”) is independent of v and hence there exists a
subsequence which converges modulo bubbling (Proposition 3.3). Let us consider the
simplest nontrivial limit configuration with a single J-holomorphic sphere v : $? — M
bubbling off, and the sequence of connecting orbits splitting into a connected sum u#v
where u € M(z~,z%; H,J) (see Figure 19).
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X

Figure 19: Bubbling for Floer’s connecting orbits

The homotopy class of the limit configuration u#v must agree with that of u” for
large v, and hence we obtain

w(u, H) 4+ 2¢1(v) = p(u”, H) = 1.

It follows from the Floer-Gromov compactness theorem that the image of v intersects
the image of u. Suppose, for example, that u(u, H) = 2k + 1 and ¢;(v) = —k. Then
the set of points lying on simple spheres of Chern number —k is the image of the
evaluation map ev : M?*(—k;J) x S2/G — M and hence has codimension 2k + 4 for
a generic J. On the other hand the moduli space M(z~,z%; H, J)/R has dimension
2k near u and hence the points on connecting orbits in M(z~,z"; H, J) near u form
a subset of M of dimension 2k + 2. Comparing this with the above statement about
codimension 2k + 4, we find that, for a generic pair (J, H), the connecting orbits of
index 2k 4+ 1 and the simple J-holomorphic spheres of Chern number —k will never
meet. Hence the above bubbling cannot occur, generically, provided that v is a simple
J-holomorphic sphere. Similar arguments work for arbitrarily complicated bubble
trees, again under the assumption that the bubble tree is simple.

Unfortunately, this argument breaks down completely in the case where v is a mul-
tiply covered sphere with negative Chern number. In such a case the actual dimension
of the moduli space M(—k;J) will be much bigger than the virtual dimension, pre-
dicted by the index theorem. As a result, we can no longer argue that the image of
the connecting orbit u must be disjoint from the image of v. This problem can be re-
solved by means of a perturbation which destroys the multiply covered J-holomorphic
spheres with negative Chern number. The construction of such perturbations will be
explained in the next four sections.

Example 5.1 Suppose that (M,w) is an 8-dimensional symplectic manifold which
satisfies (4) with 7 < 0 and has minimal Chern number N = 1. The simplest
such example is a hypersurface of degree 7 in CP® (see Exercise 1.5). In this case
J-holomorphic spheres of Chern number —1 are isolated and, for a generic almost
complex structure J € J(M,w), there will be finitely many such spheres which can-
not be destroyed by a perturbation of J. Suppose that v : S2 — M is such a curve
and that f : S2 — S? is a rational map of degree k¥ > 2. Then vo f is a J-
holomorphic curve of Chern number ¢; (v o f) = —k. Thus the J-holomorphic curves
of Chern number —k, modulo reparametrization, form a moduli space of dimension
dim Raty — dim G = 4k — 4 while the virtual dimension is 2 — 2k < 0. O
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5.2 Multi-valued perturbations

A smooth map v : S = M is a J-holomorphic sphere if 95(v) = 0, where

9s(v) = %(dv + Jodvoi) € Q®(S%,v*TM).

From an abstract point of view there is an infinite dimensional vector bundle £ — B
over the space B = Map(S?, M) with fibers &£, = Q%!(S?,v*TM), the nonlinear
operator 0y : B — & is a section of this bundle, and the J-holomorphic spheres are
the zeros of this section. This section has the following crucial properties.

(i) 9, is a Fredholm section. This means that the vertical differential
D, = D;(v) : T,B=C>®(S*,v*TM) — E, = Q" (S*,v*TM)

is a Fredholm operator between appropriate Sobolev completions. Its Fredholm
index is given by index D, = 2n + 2¢; (v), where 2n = dim M.

(ii) For a generic almost complex structure J the restriction of d; to the subset B°
of simple maps is transverse to the zero section. This means that the vertical
differential D, is surjective for every simple J-holomorphic sphere v.

(iii) There is an action of the group G = PSL(2,C) of Mdbius transformations on
both B and £. The section 0y is equivariant under this action, i.e.

0y(vop) = 0s(v)

for ve B and ¢ € G.

As noted in the previous section, the transversality statement does not extend to all of
B. Hence a different perturbation v : B — £ must be found to make 7 —  transverse
to the zero section over all of B. This perturbation must satisfy all three requirements
of transversality, equivariance, and of being “lower order”, so that the perturbed
equation is still Fredholm with the same index. Unfortunately, all three requirements
cannot be fulfilled, in general, by single-valued perturbations. This phenomenon is
already apparent in the finite dimensional case where transversality cannot, in general,
be achieved while preserving equivariance. It will, however, be possible to achieve
transversality by choosing an equivariant multi-valued perturbation

r:B—2¢.

Thus, for each v € B, T'(v) is a finite subset of £, = Q%1(S2,v*TM). The perturbed
Cauchy-Riemann equations take the form

9s(v) € T'(v). (47)

The solutions of this differential inequality will be called (J, I')-holomorphic curves.
To ensure that the space of such curves is still invariant under G we shall assume that
T is equivariant.

Suppose, for example, that an arbitrarily small multi-valued perturbation of this
form is introduced in a neighbourhood of a perfectly regular J-holomorphic curve.
Then this curve will split up into finitely many solutions of (47), depending on the
number of branches of ', and the union of these curves should be counted as one curve.
Alternatively, each of the individual solutions should be counted with some weight so
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that the sum of the weights is 1. This motivates the introduction of positive rational
weights \(v,n) > 0 for n € T'(v) such that

> Mo =1

n€l (v)

for every v € B. Call the pair (T',A) a weighted multi-valued G-perturbation.
Such perturbations form a semigroup with sum (T, A) = (T'; + I'2, A1 * A2) defined by

T)={m+m:meTi)}, Ao, = > M(v,m) Aa(v,m).
m+n2=n

Here we use the convention A(v,n) = 0 for ¢ I'(v). With this convention, I is
uniquely determined by A. In fact, one can think of (T, A) as a collection of discrete
measures on the fibers &, of our infinite dimensional vector bundle. We shall impose
the following conditions on the multi-valued perturbations. The first two were already
mentioned above.

(Finiteness) I'(v) is a finite subset of &, for every v € B. The weight function
I'(v) = Q:n = A(v,n) is positive and satisfies 3, -r(,y A(v,n) = 1 for every
v € B.

(Conformality) Forv e B,n € &,, and ¢ € G
Fwop) =¢"T(v),  Alv,n) =A(voyp,o™n).

(Energy) There is a constant ¢ = ¢(I') > 0 such that, for all v € B and all nj € &,,
n e T(v) = / In|*>dvolg: < c.
SZ

(Local structure) For every u € B there exists a C%-neighbourhood U of u, finitely
many continuous sections y; : U — £,i = 1,...,m, and positive rational numbers
Al,---3 Am such that Ay +---+ A, =1 and

F@) = {n@),.,m@®}, Awm= > X\

7i(v)=n
for v e Y and n € £,. The ; are called the branches of I and J; is called the
weight of v;. We assume that the branches satisfy the following.

e Each ~; restricts to a C*-function from U*? — k=P for 0 < £ < k.10

e The vertical differential D~;(v) : T,B¥? — £¥~1P is a compact operator for
veEUrP andi=1,...,m.1

10The superscripts denote Sobolev completions. Thus 8P = Wk (52, AO1T*S2? @ v*T M), and
U*P = N B* P is an open subset of BF? = Wk»(S2 M).

1 The vertical differential of a continuously differentiable section y : B¥>P — £5P (with j < k)
is defined as the linear operator Dv(v) : T, B5? — £)'P defined by

Di(0)E = G| @utt) a(exp, (16)

for &£ € WhP(S2,v*TM). Here ®,(£) : v*TM — exp, (£)*TM denotes parallel transport with respect
to the Hermitian connection induced by J. If V denotes the Levi-Civita connection of the metric
{-,*) = w(-,J-) then the Hermitian connection is defined by VJ/ =V — 1JVJ.
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(Transversality) If v : S> — M is a (J,T') holomorphic curve and 9;(v) = 7i(v)
then the vertical differential D; , = D0j(v) — D~;(v) is surjective.

(Free) If v: S2 — M is a (J,T') holomorphic curve and ¢ € G such that vop = v
then ¢ =id.

Perhaps the most surprising condition here is the relatively complicated form of
the “local structure” axiom. The reason for this formulation is the fact that the action
of G on B*? is not smooth. To be more precise, let v : S> — M be a W*P-function
and t = ¢; be a smooth path in G. Then the function R — B*¥P? : t s v; = vo ¢y
is only continuous but not differentiable, because differentiating with respect to ¢t we
obtain a vector field along v; of class W*~1P but not in W*P?(S2, v,*T M) = T,, B*P.
In other words, the function

BFP x G = BEP: (v,90) mvogp

is only continuous, but the function B¥? x G — B¥=4P : (v, ¢) = vo is of class C* for
0 </ < k. This differentiability of the action at the expense of the loss of differentibil-
ity of v is inherited by our perturbation. The compactness of the vertical differential
D~;(v) follows essentially from the fact that the group G is finite dimensional.

Remark 5.2 Since the space B = Map(S?, M) is separable (with the C°-topology) it
can be covered by countably many open sets U (j) which satisfy the requirements of the
“local structure” axiom. Hence there exists a collection of local sections ~y; : Uy — &€
and rational numbers )\; > 0, indexed by a countable set I, and a decomposition of
the index set 1 = J; I(j) into finite sets, such that each -; satisfies the smoothness
requirement of the “local structure” axiom, U; = U(j) for i € 1(j), > ;cpjy i =1, and
T() ={vi) : i € I(5)}, Mv,m) = iery Ai forv € U(§) and 5 € &,. O

v (v)=n

We shall have to deal with three problems: the existence of perturbations which
satisfy the above axioms, the properties of the resulting moduli spaces, and the com-
pactness problem for sequences of (J,I')-holomorphic curves. These will be discussed
in the next three sections.

5.3 Local slices

The goal of this section is to prove the existence of perturbations I' which satisfy the
above requirements. Our construction is based on local slices for the G-action on B.
Let us fix a smooth function v : S — M with finite isotropy subgroup

Gu={p€eG:uop=u}.
The tangent space of the (6-dimensional) orbit u-G = {uop : ¢ € G} at u is given
by
Vert, = {duo8 : 6 € Lie(G)}.
Here we think of § as a vector field on S2, tangent to a 1-parameter subgroup of G.
The space Vert,, is invariant under the obvious action of the isotropy subgroup G, by
& — £ o . We shall choose a complement of Vert,, which is also invariant under the

action of G,, by fixing a volume form w, € Q%(S?) which is invariant under G,,, and
defining

Hor, = {5 € C™°(S%,u*TM) : / (&, du o O)w, =0Vl € Lie(G)} .
52
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If we extend the notation w, to the G-orbit of u via wye, = ¢*w, for ¢ € G then
Horyo, = Hory 0 ¢, Vertyo, = Vert, o .

Here we have introduced the horizontal spaces as Frechét spaces. In the following we
shall denote the relevant Sobolev completions by Hor*”?. The next Lemma asserts the
existence of multi-valued local slices for the G-action.

Lemma 5.3 Let u : S2 — M be a smooth function with finite isotropy subgroup
Gy of order m. Then there exists a G-invariant open neighbourhood U = U*P C
WkP(S2 M) of u and a continuous map

k,p
p :uk,p N 2H0ru xG

with the following properties (see Figure 20).

(i) For each v € U*P the set p(v) consists of precisely m elements and the union of
the sets p(v) over allv € U*P is an open neighbourhood of {0} x G in Hor*? x G.

(ii) IfveUr? and ¢ € Horﬁ’p is sufficiently small then
&) eplv) <= v=exp,(§) oy
(iii) Locally near every v € UXP the branches p; of p are £ times continuously differ-
entiable as maps from (a neighbourhood ov v in) UP to Horﬁ_f’p X G. Moreover,
the differential
dpi(v) : WhP(S? v*TM) — Hor" P x T, G

is a compact operator for every v € UFP and every i. Here 1; € G is defined by
pilv) € Hork ™% x {u}.
(iv) Ifv e U*? and (&,v) € p(v) then

G, ={y " opotp: p€Gy, Eop=¢}.
Proof: This result follows from the the implicit function theorem for the map
Hor®? x G — BFP : (¢,4) = exp, (€) o1

which maps {0} x G, to u. Details can be found in [22]. O

Figure 20: Local slices for the G-action on Map(S?2, M)
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Exercise 5.4 Let p : UF? — 2Horu?xG e the local slice of Lemma 5.3, and fix an
element v € UP. If (£,4) € p(v), prove that

p(v) = {(Eop ' pot) : p € Gy}. =

Corollary 5.5 Letu € Map(S?, M) be a smooth function with finite isotropy subgroup
G, of order m. Then for every n € QO1(S2, u*T M) there exists a weighted multi-
valued G-section (I, \) which satisfies the “finiteness”, “conformality”, “energy”, and
“local structure” axioms, as well as

L(u) ={¢*n : ¢ € Gy}, )\(u,n)z#{weGum: cp*n:n}_

Proof: Let p : YFP — 2Hori"xG be the local slice of Lemma 5.3, fix an element
v € UMP and write

p) ={(;¢1),-- - (Ems ¥m)} -

Then v = exp, (&) o ¢; for all i. Let ®,(§) : vw*TM — exp,(§)*TM be given by
parallel transport as in the footnote on page 60. Then

(@u(&i)n) 0 dips € &y

for each i. Now choose a smooth cutoff function 8 : R — [0, 1] which is equal to 1 in
[-1/2,1/2] and equal to zero outside [—1,1]. Then define 3., : Hor,, — [0,1] by

8@ =8| [ [P+ + X € EoRP +2)" o

@€EGy

This is a smooth G-invariant cutoff function on HorL? vanishing outside the &-
neighbourhood of zero. Next define

)= (G, Gnd, A g = FEEG=EE

where ¢; = B p(&)(Pyu(&)n) o dip; € &, for i = 1,...,m. This perturbation has the
required properties. In particular, note that {; = (y if and only if ¢*n = 5 where
@ = 1y 01); " € Gy. Hence the number of distinct branches is the quotient m/my,
where m, = #{p € G, : p*n = n}, and two distinct branches agree precisely on the
zero set of the cutoff function . , (which is connected and contained in the closure of
its interior). O

So far we have constructed a perturbation which satisfies the “finiteness”, “con-
formality”, “energy”, and “local structure” axioms, but not the “transversality” and
“free” axioms. To find a perturbation which also satisfies the “transversality” axiom
it is useful to construct a sufficiently large family of perturbations, parametrized by a
separable Hilbert space H, by superposition. This is possible because of the semigroup
property of the class of perturbations considered above. The family of perturbations
takes the form of a pair of maps

H x B —2¢: (h,v) = Ty(v), HxE&—=Q: (hyv,n) — \(v,n),

such that, for each h, the pair (I'y, \,) satisfies the “finiteness”, “conformality”, “en-
ergy”, and “local structure” axioms, In addition, the branches H x U; — & : (h,v) —
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~vi,n(v) are required to be linear in h for each v € U;, The crucial condition is that the
linear operator

T,BYP x H — EF71P 2 (&, h) — DO;(v)€ — Dyin(v)€ = v, ;,(v)

is surjective whenever 0;(v) = 7; n(v) and ||h|| < & (for a sufficiently small number
€ > 0). Under these assumptions the universal moduli spaces

M (L ATr}n) = {(v,h) €Uy x H : ||h]| <&, 05(v) = vin(v)}

are all smooth Hilbert manifolds. Now choose a common regular value h of the pro-
jections
M (J,{Tn}n) = H

with [|h||] < & to obtain a perturbation (T, \,) which satisfies the “transversality”
axiom. That such a regular value exists follows from the Sard-Smale theorem. That
a family of perturbations {I'y}, with the above properties exists, follows from Corol-
lary 5.5 via superposition.

To construct a perturbation which satisfies the “free” axiom we use a similar
argument. We note that, if v o ¢ = v for some ¢ € G — {id} then, for every point
z € S?, there exists a point 2’ € S? — {2} with v(z) = v(2'). The goal is to show
that this does not happen generically for the solutions of (47). To see this consider
the universal spaces X; consisting of tuples (v,21,...,2m,21,---, %, J, h) such that
veU, Je TJ(M,w), h€ H, zj,2; € S? with z; # 2}, and

05(v) = vin(v), v(z1) = v(21),- -, v(zm) = v(z),)-

One can use the techniques of [31] to prove that the spaces X; are Banach manifolds
and the projections
Xi—> J(M,w)x H

are Fredholm maps of index 2n + 2¢1(4;) + m(4 — 2n), where A; € Hy(M,Z) is the
homology class of v € U;. If n > 3 and m = m; is chosen sufficiently large, then
this index is negative. Now let (J, h) be a common regular value of these projections.
Then every solution v € U; of ;(v) € Tx(v) has less than m; double points. This
implies that v o ¢ # v for every ¢ € G — {id}. Hence, for any such common regular
value (J, h), the pair (J,T') satisfies the “free” axiom. Full details of these arguments
are given in [22].

5.4 Branched moduli spaces

Let (T, \) be a weighted multi-valued perturbation with branches v; : #; — £ which
satisfies all the axioms in Section 5.2. Fix a spherical homology class A € Hy(M,Z)
and consider the moduli space

M=MA D) ={v:S> > M : v.[S?] =4, 8;(v) €T(v)}.

This space carries a natural rational label M(A4;J,T) = Q : v = A(v) = A(v,95(v)).
It can be expressed as a union of countably many branches

M= M(A;J,v) = {vel; : v[S?] = A4, 0;(v) =7i(v)}.

In other worde, M; is the zero set of the section 8y — ;. The “transversality” axiom
asserts that this section is transverse to the zero section of £ and it follows from
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the implicit function theorem and the “local structure” axiom that M; is a smooth
manifold of dimension

dim M; = index D; ,, = 2n + 2¢1(A).

Here we abbreviate D;, = Dd;(v) — Dv;(v) : T,B¥? — £F~1P_ This operator is the
vertical differential of the section 8y — 7; at v (see the footnote on page 60). The
“ocal structure” axiom guarantees that this operator is Fredholm and its index agrees
with that of D, = D8;(v). In summary, the moduli space M = M(4;J,T) is a
union of countably many smooth manifolds, called the branches of M. For a generic
perturbation I' it is a branched manifold in the following sense.

Definition 5.6 A branched m-manifold is a pair (M, X), consisting of a Hausdorff
topological space M with a countable basis and a function A : M — Q, together with
a countable collection of triples {(M;, Ai, ;) Yicr and a decomposition of the index set
I =U; I(j) into finite sets such that the following holds.

(i) The sets M(j) = Uiel(j) M; form an open cover of M, for every i € I(j), M; is
closed relative to M (j) and, for all i,i' € I,

intMi, (Mz N Mir) = intyy, (Mz N Mil).
The A\; are positive rational numbers such that

x € M(j) = Az) = Z i

i€I(j)
zEeM;

(ii) For every i € I the map ¢; : M; = R™ is a homeomorphism onto an open subset
of R™. For every pair i,i' € I the transition map

‘Pi’ [e] (pi_l M (,Di(intMi (Ml n le)) — (pi/ (intMi, (Mz n Mil))

18 smooth.

(iii) For every x € M there exists a continuous function 0, : M — [0,1] such that
0,(z) =0, 0,(y) >0 fory # x, and 0, o ;1 : p;(M;) = [0,1] is smooth for
every i.

A branched m-manifold with boundary is defined similarly. In this case the
charts @; : M; — H™ are homeomorphisms onto open subsets of the upper half space
H™ = {z € R™ : z,, > 0}, we define dM; = p; *(OH™), and assume that

My NOM; C OM;
for all i,i' € I. The boundary of M is then defined by

oM = U@Mi.

A branched manifold (M, \) (with or without boundary) is called oriented if
det d(epir 0 ;") () > 0

for alli,i' € I and all x € p;(intprr, (M; N My)).
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Remark 5.7 Let (M, \) be a branched manifold with charts {(M;, A;, ¢;) }icr- Then
the set
Mg ={z €M : z € M; = z € int(M;)}

is open and dense in M (see Lemma 5.10 below). The definition shows that M has
a well defined tangent space T, M for & € Mieg. If © ¢ M;eq, then there is a tangent
space T, M; for every i € I with © € M; and these tangent spaces of the different
branches need not be naturally isomorphic. O

Exercise 5.8 Let (M, ) be a branched manifold with charts {(M;, \;, p;) }ier and
suppose that each set I(j) in the partition of the index set consists of a single point.
Prove that M is a smooth manifold and A : M — Q is constant on the components of
M. Hint: Each M; is an open subset of M. O

Exercise 5.9 Define M = D x {£1}/ ~ where D C C denotes the closed unit disc
and the equivalence relation is given by (z, —1) ~ (22,1) for |z| = 1. Define A\ : M — Q
by A([z,—1]) =1/2 for |z| < 1 and A([z,1]) =1 for |z| < 1. Prove that (M, \) admits
the structure of an oriented branched 2-manifold. Note that this space cannot be
expressed as a union of closed 2-manifolds. O

Lemma 5.10 Suppose that M is a metric space with a covering {M;};cr and a de-
composition I =, I(j) of the index set into disjoint finite subsets I(j) such that

(1) for every j, M(j) = UZ.EI(]-) M; is an open subset of M,
(ii) for every i € I(j), M; is a relatively closed subset of M(j),
(iii) for alli,i' €I, il’ltMi, (M, N M,/) = intyy, (Mz N M,/)
Then Myeg ={x € M : x € M; = x € int(M;)} is a dense open subset of M.
Proof: The proof is in three steps.
Step 1: M,e; is open.
We prove that M; Nint(M;) C int(M;) for all 4,7" € I. To see this note that the set
M; Nint(M;) is open relative to M and hence
M; N int(M,-) C iIltMi, (M, n Mi/) = inty; (Mz n Mi/).

Now let z € My Nint(M;). By what we have just proved, z € inty, (M; N M), and
hence there exists an open neighbourhood U C M of x such that U N M; C M; N M.
Hence U Nint(M;) is an open set in M which contains z and is contained in M.
Hence = € int(M; ). Thus we have proved that

M; N int(Mi) C int(Mi/)

for all 4,4" € I. This implies
Miyeg = | ) int(M),

iel
and hence M, is open.
Step 2: For every i € I(j),
M; — int(M;) = U (Mi N My —intp, (M; N Mi,)>.

iel()—{i}
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Suppose first that € M; —int(M;). Then there exists a sequence z, € M — M; which
converges to x. Since M(j) is open, we may assume without loss of generality that
x, € M(j) for all v. Since I(j) is a finite set we may assume without loss of generality
that there exists an ¢’ € I(j) — {¢} such that z, € M for all v. Since My is closed,
relative to M (), this implies that & € M;. Moreover, x is the limit of a sequence in
MZ'I — (Mz N le) Hence x € Mz N M,;l — intMi, (Mz N M,;l).

Conversely, suppose that x € M; N My —int g, (M; N M) for some ' € I(j) — {i}.
Then there exists a sequence z, € My — (M; N My) which converges to x. Since
x, ¢ M; for all v this implies = ¢ int(M;).

Step 3: M,e; is dense in M.

It suffices to prove that int(M;) is dense in M;. To see this we write I(j) = {io,.-.,im}
with i = 4 and prove by induction over £ that the following holds for £ =1,...,m.
For every x € M; and every € > 0 there exists a y € M; such that

(a) d(z,y) <e.

(b) For every k € {1,...,£} either y ¢ M;, or y € intar, (M; N M;,).

First suppose £ = 1. If z € intpg, (M; N M;, ) choose y = z. If ¢ intpr, (M; N M;,) then
there exists a sequence z,, € M; — M;, converging to z and we can choose y = z,, for v
sufficiently large. Now suppose that the assertion has been proved with £ replaced by
£ —1 where £ > 2. Choose z € M; such that d(z,2) < e/2 and, for k € {1,...,£—1},
either z ¢ M;, or z € inty, (M; N M;,). If z € intpy, (M; N M;,) choose y = z. If
z ¢ inta, (M; N M;,) then there exists a sequence z, € M; — M;, converging to z.
There exists an N € N such that the following holds for v > N and k € {1,...,£—1}.

o d(z,2,) <e/2.
o If z € intpr, (M; N M;,) then z, € intyy, (M; N M;,).
o If 2 ¢ M;, then z, ¢ M;,.

Hence, for v > N, the point y = z, satisfies the conditions (a) and (b) above. This
completes the induction. Thus we have proved that every point x € M; can be
approximated by a sequence

we () ((Mi — My) Uintpy, (M; N M,-/)) = int(M;).
i'el(5)—{d}

The last equality follows from (iii) and Step 2. Hence int(M;) is dense in M;, as
claimed. This proves the lemma. O

Compact oriented branched 1-manifolds are also called train-tracks (see Fig-
ure 21). They were introduced by Thurston (with real weights) in connection with
the study of laminations on surfaces. A number of mathematicians generalized these
ideas and studied 3-manifolds by using branched 2-manifolds. The following result
about the ends of compact oriented branched 1-manifolds is the analogue of the ob-
servation that every compact 1-manifold has an even number of ends. It plays the
same role in the construction of rational invariants as the 1-manifold lemma plays in
differential topology (cf. Milnor [33]). Train tracks also play a crucial role in the work
of Fukaya-Ono [14].

Before stating the lemma we point out that every endpoint of a branched 1-
manifold may belong to several branches and we do not assume here that OM C M;eq.
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Figure 21: A compact oriented branched 1-manifold with M C Mg

Let x € OM N M(j) and for every ¢ € I(j) with z € M; denote by v; € T, M the out-
ward unit normal vector. This vector together with the orientation of M; determines
a sign
o — { +1, if v; is positively oriented,
*7 1 —1, ify; is negatively oriented.

Now consider the oriented sum of the weights A; and define

i€l

z€M;
Note that this number is not equal to A(z) unless the £; are all equal to 1. We leave
it to the reader to prove that p(z) is independent of the choice of j with z € M (j).

Lemma 5.11 Let (M, ) be a compact oriented branched 1-manifold with boundary.
For each x € OM let p(x) € Q be defined by (48). Then

Z p(z) =0.

zEOM

Proof: The proof is in three steps. The first step shows that M can be covered
by sets M; with endpoints in M;ez. The second step proves that (M, ) admits the
structure of a rational cycle. The last step proves the lemma.

Step 1: We may assume without loss of generality that, for every i, the interval
0i(M;) is one of (—1,1), [0,1), or (=1,0], and that @;~' extends smoothly to the
closure of this interval. Moreover, we may assume that the endpoints of M; are regular,
i.e.

+ _ 1 —1
of = i 570 € Mo

i
for every i € I with £1 € cl(v;(M;)).
For every € M (j) choose a number ¢, > 0 such that

e For every i € I(j), €, is a regular value of 6, o ;L.

o c; & 0, (M — Mpeg).

e infy_ ;) 0 > €, and infar, 6, > €, for every i € I(j) with = ¢ M;.

To see that such a number e, exists, note first that the set ¢;(M; — int(M;)) has
empty interior and is closed relative to ¢;(M;). Hence the image of this set under
0, o ;! is of the first category in the sense of Baire, i.e. is a countable union of
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closed sets with empty interior.'? The set 6, (M — M;eg) is the union of these images
over all 4, and hence is also a countable union of closed sets with empty interior.
Hence the set R — 0, (M — M,eg) is of the second category in the sense of Baire, i.e.
is a countable intersection of dense open sets. Hence the set of all regular values of
6, in the complement of §,(M — M,ez) is also of the second category in the sense of
Baire and, in particular, it is dense. This shows that there exists an ¢, > 0 which
satisfies the first two conditions above and that €, can be chosen arbitrarily small.
Next observe that if z € M(j) — M; for some i € I(j) then = ¢ cl(M;) and hence
infar, 8, > 0. This shows that a sufficiently small number e, > 0 satisfies the third
condition as well. Thus we have proved the existence of a constant £, > 0 which
satisfies the above requirements.
Now define
Us={yeM:0,(y) <ez}.

Then U, is an open neighbourhood of z and it is equal to the union of the branches
M;NU;, over all ¢ € I(j) with € M;. Moreover, since e, ¢ 6, (M — M,¢g) is a regular
value of the map 6, o ;71 : ;(M;) — [0,1] for every i € I(j), the set

i(M;NU,) = {t € pi(M;) : 6, 007 (t) < ez}

is a finite union of open intervals with boundary points in ¢;(M;¢g). Now cover M by
finitely many such sets U,. This proves Step 1.

Step 2: There exists a finite set of vertices V. C Mg UOM, a finite collection of
continuous injections Yo : [0,1] = M, indezed by o € A, and a map A = I : a — i(a)
such that the following holds.

e For every a the endpoints to = v4(0) and x1 = v,(1) lie in the set V and
7((0,1]) € Mi),  7a([0,1]) NV = {zo,z1}.

Moreover, @i(4) © Vo is an orientation preserving diffeomorphism from [0, 1] onto
the interval [to,t1], where to = @i(a)(T0) and t1 = @;4)(z1).
o For everyxe M -V,

/\(.’E) = Z /\i(a)-

z€va([0,1])

Az)= Y M@= D A

Yal0)=2 va(l)=2

o IfxeV—-—0M,

121f f : M — N is a smooth map between manifolds of the same dimension and A C M is a
compact set with empty interior, then f(A) C N is a compact set with empty interior. Since A is
compact we may assume without loss of generality that the topology of M has a countable basis and
so Sard’s theorem applies. Now suppose, by contradiction, that int(f(A)) # 0. By Sard’s theorem,
the function f has a regular value y € int(f(A)). Since A is compact, f~1(y) N A is a finite set, and
we denote f~1(y)NA = {z1,...,Tm}. Choose compact neighbourhoods U; of x; such that, for every
1, the restriction of f to U; is a diffeomorphism onto some compact neighbourhood of y. Then there
exists a compact neighbourhood V C f(A) of y such that, for every z € A with f(z) € V, there
exists an ¢ € {1,...,m} such that z € U;. Otherwise there would be a sequence z, € A — Ul U;
such that f(z,) converges to y and then any limit point of z, would be a preimage of y in A not
equal to any of the z;. This contradiction shows that the neighbourhood V exists. By definition,
this neighbourhood satisfies V' C Ul f(U; N A). But f(U; N A) is a compact set with empty interior
for every . By Baire’s category theorem, V cannot be the union of finitely many such sets. This
contradiction shows that f(A) has empty interior.
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The proof is by induction over the number of sets in the open cover M = (J; M (j).
Fix any index j = j;. By Step 1, the closure of the set M(j1) can be covered by
finitely many such paths v, : [0,1] = M. To see this simply choose the v, to
be reparametrizations of the curves ;=1 : cl(p;(M;)) — cl(M;). Now under the
assumptions of Step 1, one checks easily that the complement M=M-M (j1) is
again a compact branched manifold covered by open sets M(j) = M(j) — M(j1),
j # j1, which still satisfy the requirements of Step 1. This completes the induction
argument and the proof of Step 2.

Step 3: We prove the lemma.

Step 2 defines a directed graph with vertices x € V and edges 4. The edges carry
rational weights A\, = Ajo) > 0. Note that all the boundary points = € M are

vertices and that
p(z) = Z Ao — Z Aa

Ya(l)=2 Ya(0)=2
for z € 9M. On the other hand, by Step 2,

A@)= D A= D)

Yo (0)=x Yo (1)=2

for x € V — OM. Hence

Zp<x)=z( T - ¥ /\a):O.

z€OM z€V Mva(l)=x Ya(0)=z
This proves the lemma. |

Let us now return to the moduli space M = M(A4;J,T) of (J,T")-holomorphic
spheres representing the homology class A € Hy(M,Z). The “free” axiom guarantees
that the action of the reparametrization group G = PSL(2,C) on M is free. However,
the branches M; = M(A4; J,v;) will not, in general, be invariant under G. Neverthe-
less, by using local slices (as in the case of principal bundles), one can show that the
quotient M /G is again a branched manifold of dimension

dim M(A4;J,T)/G = 2n + 2¢;(A) — 6.

So far we have not addressed the compactness question. As in the case of J holomor-
phic curves, the moduli space M /G will not be compact, in general, but bubbling may
occur. To obtain bubble trees of (J,I')-holomorphic curves in the limit, we must en-
sure the compatibility, under Gromov convergence, of our multi-valued perturbations
correponding to different homotopy classes.

5.5 Perturbations and stable maps

The goal of this section is to obtain the same kind of compactness results for the
perturbed equations (47) as were discussed in Section 4 for J-holomorphic curves. For
this it is useful to make sure that the perturbation vanishes in a neighbourhood of any
point near which bubbling occurs. Moreover, we must match the perturbations on
the components of a limiting bubble tree with the perturbation on the approximating
curves. This requires a refinement of the construction in Section 5.2. Namely, we shall
introduce perturbations which not only depend on the curve u but also on a finite set
of marked points, and are required to vanish near the marked points.
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Perturbations and marked points
Consider the space
B = B(A, k) = Map 4(S?, M) x ((S*)* — Ay)

whose elements are tuples (u,z) = (u, 21,. .., 2k), where u : S — M is a smooth map
representing the homology class A € Hy(M,Z) and z,...,2; are pairwise distinct
points in S2. Denote by & — B vector bundle with fibers

Euz = {n € Q%S u*TM) : 5 =0 near z; for i = 1,...,k:}.

We shall consider multi-valued perturbations I' : B — 2¢ which satisfy all the axioms
of Section 5.2. The “equivariance” axiom now takes the form

F(u oY, (p_l(zl)a s ;SO_I(Zk)) = (,O*F(U, Rly--- 7zk)' (49)
The definition of £ guarantees that each solution (u, 21, ..., zx) of the equation
ds(u) € T(u, 21, ., 21) (50)

is an unperturbed J-holomorphic curve in some neighbourhood of the marked points.

Perturbations and stable maps

Fix a tree T' and consider the space B(A; T, k) of all stable maps

(u,2) = ({ua}aer, {2aptars, {®i) 2itiz1,... k),
modelled over the tree T', which satisfy
D .S = A
a€T

Here the u, : S> = M are arbitrary smooth functions, J-holomorphic or not, and the
stability condition takes the form #Z, > 3 whenever u,,[S?] = 0 € Ho(M,Z). The
space B = B(A;T, k) is an infinite dimensional manifold whose tangent space T{(y, B
consists of tuples

({&ataer: {Captams, {Giti=1,....k)
with &, € C®(S%,ua*T M), Cap € T:.,5%, G € T.,S?, which satisfy

€a(zap) + dua(20p)Cap = §a(28a) + dug(25a)(ga-

For a tree T the perturbed equations will take the form

6.](“(1) € F(uayza)a (51)

where
Zo =A{2ap : aEB}U{z : a; = a}

(as in Section 4.2). We claim that I" and J can be chosen such that the space of
solutions of (51) is an oriented branched manifold of the predicted dimension. The
details are as in [31] and are carried out in [22].
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The space
B(T,k) = | JB(4; T, k)
A

carries an action of the group G(T') of automorphisms of the bubble tree. The elements
of G(T') are tuples (f, {¢a tacT) Where f : T — T is a tree automorphism and ¢, € G
for a € T. The group operation is given by

(ga {¢a}aET) o (f7 {(p}aET) = (g o f7 {wf(a) o (Pa}aET)a
and the action on B(T, k) by (f,¢)«(u,z) = (,Z), where

lif(a) =Ua©Pa 5 Zf(a)f(B) = PalZap), & = flai), Zi=pa;(2i)

(see Definition 4.4). It follows from (49) that the moduli space of solutions of (51) is
invariant under the action of G(T'). The “free” axiom can be extended to ensure that
the action of G(T') on this moduli space is free. For details see [22].

Compatibility

The crucial compatibility condition for the perturbations in different homology classes
is continuity with respect to the Gromov topology. More precisely this means
the following.

(Compatibility) If a sequence (u”,z2{,...,2;) Gromov converges to a stable map
(u,z) € B(T, k), with corresponding sequences ¢ € G (see Definition 4.5), then

T(ug, Zo) = lim (p2)* T (u”, 27,...,25) (52)
V—00
and
/\(Ua,Za;Tl)Zylglgo uer(; . /\(u 1Ry Rk 7] ) (53)
Y ET(u¥ 2¥ ., 2Y

[[(e%)* 0¥ =n|| oo <2

for e > 0 sufficiently small. In (52) the convergence is uniform on S2?. That
u” o @¥ only converges uniformly on compact subsets of S? — Z, is immaterial
because the perturbation vanishes in a neighbourhood of Z,.

The existence of an almost complex structure J and a family of perturbations (I' 4, A4),
one for each homology class A € Hy(M,Z) (and each number k of marked points),
which satisfy the axioms of Section 5.2 and the “compatibility” axiom, is proved by
induction over w(A). For w(A) < 2h all J-holomorphic curves are simple. Hence
transversality can be achieved by a generic choice of J. Now suppose that the per-
turbations have been constructed for w(A) < mh for some integer m > 2, and fix a
homology class B with w(B) < (m + 1)h. Then one can use the gluing construction,
of Appendix A in [31], and the induction hypothesis, to define the perturbation in
a Gromov neighbourhood of any given bubble tree, representing the class B. The
estimate for the inverse in [31], Appendix A, then shows that the glued perturbations
automatically satisfy the crucial “transversality” axiom. Away from the bubble trees
one can use the methods of Section 5.3 to construct the perturbations. For more
details of the induction argument see [22].
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5.6 Rational Gromov-Witten invariants

The techniques explained so far suffice to define the Gromov-Witten invariants for
general symplectic manifolds via solutions of the perturbed equations (50), following
essentially the arguments in [31]. One considers the moduli space

Mg a(Myw, ,T) = {(u,z1,-..,21) € B(A,k) : 85(u) € D(u, 21, .., ),
u.[S?] = A, u is somewhere injective}.
The group G acts freely on this space and, for a generic perturbation I', the quotient
M a(M,w, J,T) = M}, 4(M,w,J,T)/G
is a branched manifold of dimension
dim Mg, 4(M,w,J,T) = 2n + 2k + 2¢1(A) - 6,

with rational weight A : Mg, 4, — Q. Note that this space Mg, 4 is an open subset
of the space Mg a(M,w, J,T) of all stable (J,T)-holomorphic curves of genus zero
with k& marked points in M which represent the class A. The definitions and theorems
are as in Section 4 for the unperturbed case. In particular, the moduli space Mg j, 4
is a compact metrizable space, it is a union of branched manifolds corresponding to
the different tree structures, and Mo k4 1s the “top dimensional stratum” of Mo ;4.

Given cohomology classes ay, ..., ar € H*(M,Z), choose submanifolds (or cycles)
N; C M in general position which are Poincaré dual to the a;, i.e. a; = PD([N;]). If

k
> deg(ay) = 2n + 2k + 2c1(A) — 6,
Jj=1

then the subset of all tuples [u,z1,...,2r] € MG, 4 with u(z;) € N is a compact
zero dimensional branched manifold with a natural orientations. Thus Mg, 4 is a
finite set. But in the zero dimensional case a single isolated point may belong to
several branches and each of the branches may carry different orientations, which
in the zero dimensional case means different signs. Geometrically, this means that
several branches of the multi-valued perturbation may have a common zero but not

have the same differential at this zero. Given a solution [u,z1,...,2k] € MG, 4
with u(z;) € Nj, let v1,...,7vm denote the local branches of the perturbation I' near
(u,21,...,2k), and let Aq,..., A, be the corresponding weights. For each branch ~;

which satisfies v;(u, 21, . ..,2r) = 0;(u) there is a sign ¢; € {1}, determined by the
orientation of this branch, and we define

p(uazla"'azk) = Z 51)\1

Counting the solutions with these rational weights gives rise to the rational Gromov-
Witten invariant

(I)A(ala"'aak): Z p(uazla"-azk)' (54)

One can prove, proceeding as in [31] and using Lemma 5.11, that the right hand side
is independent of the cycles N;, the almost complex structure J, and the perturbation
T, used to define it. Details will be carried out in [22].
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Remark 5.12 A crucial point in the construction of the Gromov-Witten invariants is
the fact that, generically, there are only finitely many equivalence classes of solutions
(u,21,...,2k) of (50) which satisfy u(z;) € N;, and that u is somewhere injective for
each solution. The injective condition is redundant, by the “free” axiom. One can
argue, as in [31], that if there were infinitely many solutions, then there would be a
sequence of solutions which Gromov converges to a stable map modelled over a tree
with more than one vertex. This limit curve would then belong to a moduli space of
strictly lower dimension. But since we have started with a zero dimensional moduli
space the limit moduli space has negative dimension and therefore must be empty.
The key point is that for the perturbed equations the actual dimension always agrees
with the virtual dimension, and hence the difficulties discussed in Section 5.1 do not
arise. O

Other approaches to the construction of the Gromov-Witten invariants for general
symplectic manifolds were developed by Li-Tian [27], Ruan [42], and Siebert [51].
These authors construct, for every J € J(M,w), every A € Hy(M,Z), and every
integer k > 0, a rational fundamental classes

[Mo,k,A (M, w, J)] € H2n+2c1 (A)+2k:—6(M0,k,A (M7 w, J)y Q)

on the compactified moduli space Mg r,4(M,w, J) of stable J-holomorphic curves in
the class A with k£ marked points. The Gromov-Witten invariants can then be defined
by evaluating the cohomology class e;*a; — --- — eg*ay on the fundamental class:

Da(ay,...,ar) = e1ar — - — epfay.

/[Mo,k,A(M,w,J)]

Here the e; : Mo g,4(M,w,J) = M denote the obvious evaluation maps.

The standard gluing techniques, as in [31, 26, 43], can be used to prove that
the rational Gromov-Witten invariants satisfy the usual gluing rules. One version of
these rules asserts the associativity of quantum cohomology and the WDVV equation.
Another version involves the Chern classes of certain line bundles over the moduli space
and plays a crucial role in the recent work of Givental on mirror symmetry [16, 17].

5.7 Rational Floer homology

The goal of this section is to explain how the above ideas can be used to define
Floer homology groups for symplectic manifolds which satisfy (4) with 7 < 0. Fix
a time dependent Hamiltonian H; = Hy,; with nondegenerate 1-periodic solutions
r € P(H) and, for each pair #* € P(H), consider the space Z(z~,2%) of smooth
functions u : R x S* — M which satisfy (8). As in Exercise 2.10, abbreviate

z=2zH)= |J 2@,z
zEeP(H)

and consider the vector bundle £ — Z with fibers
Eu=C (R x S*,u*TM).
For the purpose of this discussion the subscript zero can either denote compact support

or some exponential decay condition. The precise notation is immaterial because, when
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it comes to the analysis, we will have to work with suitable Sobolev completions. To
extend the above ideas to Floer homology we must choose a weighted multi-valued
section

I:2Z—2° A: €= Q,

which is equivariant with respect to the R-action on Z and €. Instead of (7) we shall
then consider the differential inequality

051 (u) = Osu + J(u)Ou — VHy(u) € T(u). (55)

The axioms for T are as before “finiteness”, “conformality” (here equivariance under
the R-action), “local structure”, and the energy bound

o5} 1
n € T'(u) = / / |n|? dtds < c. (56)
—o0 J0

The “transversality” and “free” axioms are immaterial in this case. Transversality can
be achieved by a generic perturbation of H (see [13] or [47]), and that the R-action
is free is obvious unless z~ = xt, and this case can easily be dealt with separately.
Instead, the crucial point is the “compatibility” axiom, which is needed to prevent the
bubbling off of multiply covered J-holomorphic spheres with negative Chern number
as in Section 5.1. The purpose of the perturbation is indeed, to make shure that what
bubbles off are not J-holomorphic curves, but (J, I')-holomorphic curves, because these
form moduli spaces of the predicted dimensions. To carry this out one must introduce
a notion of stable connecting orbits in analogy to the notion of stable maps, by
including finite chains of connecting orbits together with bubble trees. The stability
condition allows the case of connecting orbits of the form u(s,t) = z(¢) for some
x € P(H), but such a onnecting orbit must contain at least one double point at which
it intersects a J-holomorphic curve in the tree (see Figure 22).

Figure 22: Stable connecting orbits

Then there is the notion of Floer-Gromov convergence for stable connecting
orbits, and the compatibility condition has the form of continuity with respect to this
Floer-Gromov topology. In other words, the perturbation for the stable connecting
orbits will involve perturbations for the J-holomorphic curves in the bubble tree and
if u¥ is a sequence of connecting orbits converging to such a stable connecting orbit
in the Floer-Gromov topology, then the perturbations I'(u”) must converge to those
for the limit configuration. The details are as in Sections 4.2 and 5.2 and will not be
discussed here. The reader is instead referred to [23].

It is important to note that the differential inequality (55) is no longer a gradient
flow equation. Moreover, the energy identity of Exercise 1.23 now becomes an energy
inequality.
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Exercise 5.13 Prove that every solution u € Z(z~,z%) of 05 m(u) = v(u) satisfies

E(u) = CLH(IU_,U_) - G,H(.CL'+,U+) + /oo /1 (6‘9“;7(”)) dtds;
—o0 40

where u® : B — M are smooth maps which satisfy u®(s2™) = z*(¢) and ut = v~ #u.
Deduce that (E(u) —¢)/2 < ag(z™,u”) —ag(zt,ut) < 2(E(u) + ¢) where c is the
constant of (56). Deduce further that, if (4) holds, then

Bw) < e+ (i, H) + ) = () ) 67)
where ng : P(H) — R is defined by (11). O

With the perturbation in place let us denote the space of perturbed connecting
orbits by -
M(a~, 2% H,J,T) = {u € Z(~,2%) : dm(u) € T(u)} .
For generic choices of H, J, and T, this is a finite dimensional branched manifold of
local dimension p(u, H) near u (Exercise 2.10) and it carries a weight function

M(z™, 2zt H,J,T) = Q:u— Au) = Au,dy,u(u)).

As before we denote by M'(z~,z%; H,J,T') the 1-dimensional part of this moduli
space. In view of the perturbation the difficulties of Section 5.1 disappear and, us-
ing (57), we find that the quotient

Mz 2 H,J,T) = M'(z,2+; H,J,T)/R

is a finite set (compare with Remark 5.12). As in the case of the rational Gromov-
Witten invariants, each perturbed connecting orbit [u] € M (z~,zT; H,J,T) may
belong to several branches of the zero dimensional moduli space and hence carries a
rational weight p(u) = ), €;A;, where the \; are the weights of the branches to which
u belongs, and the ¢; € {£1} are the signs determined by the coherent orientations.
The Floer chain complex is now defined as the vector space over Q, generated by the
periodic solutions of (1):

CFR.H)= P Q).

z€P(H)
The boundary operator & = 97T is given by

7 (y) = > p(u) (z).
z€P(H) [u]EJ\//\ll(y,z;H,J,F)
Theorem 5.14 Suppose that (M, w) satisfies (4) with ™ < 0 andlet H, J, T be chosen
as above. Then 000 =0 and the Floer homology groups
ker 9/ H:L

HF*(M,LU;H, J,F) = W

are naturally isomorphic to the singular homology of M with rational coefficients.
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Proof: We only sketch the proof of 0 o @ = 0. This is equivalent to the identity

DS S s =0

YEP(H) [y M1 (2,y;H,J,T) [u]€M! (y,2;H,J,T)

for all z,z € P(H). As in the monotone case, this follows by examining the moduli
space M? (z,z; H, J,T'). For a generic perturbation I and a generic Hamiltonian H,
this space is a regular oriented branched 1-manifold with rational weights. Via Floer’s
gluing theorem, it can be compactified by including as boundary points pairs [v#u]
with [u] € Mt (y,z; H,J,T') and [v] € A//Tl(z,y;H, J,T). Associated to each boundary
point is a rational weight p([u#u]). One can show that these weights are given by

p([v#tu]) = p(v)p(w)

and hence the result follows from Lemma 5.11. This proves that 9 o 9 = 0.

The rest of the proof is a longer story, but the details are essentially as in the
standard case. The easiest approach is to fix the perturbation I' and the almost
complex structure J, and only vary the Hamiltonian H. Then one can employ the
methods of Section 3.4 to construct the isomorphism between Floer homology and
ordinary homology. It is, however, more elegant to prove first that the Floer homology
groups are independent of H, J, and I'. For more details see [23]. O

The above construction can easily be extended to arbitrary compact symplectic
manifold by using Novikov rings as in Section 3.7. Hence we have proved the following
theorem, modulo some analytical details which are carried out in [20, 21, 22, 23]. Other
proofs are given in [14, 28].

Theorem 5.15 Suppose that (M,w) is a compact symplectic manifold. Let Hy =
Hiy 1 be a smooth time dependent Hamiltonian on M such that all the 1-periodic
solutions of (1) are nondegenerate. Then #P(H) > dim H,.(M, Q).
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